Statistics 330b/600b, Math 330b spring 2014

Homework # 8 Due: Thursday 27 March

Please attempt at least the starred problems.

- *[1] Suppose σ is a stopping times for a filtration $\{\mathcal{F}_i : i \in \mathbb{N}_0\}$ and $\{X_i : i \in \mathbb{N}_0\}$ is a sequence of real-valued random variables adapted to the same filtration. Suppose also that $\{B_i : i \in \mathbb{N}_0\} \subset \mathcal{B}(\mathbb{R})$. Show that $\tau = \inf\{i \geq \sigma : X_i \in B_i\}$ is also a stopping time.
- *[2] Suppose σ and τ are stopping times for a filtration $\{\mathcal{F}_i : i \in \mathbb{N}_0\}$. Show that $\mathcal{F}_{\sigma \wedge \tau} = \mathcal{F}_{\sigma} \cap \mathcal{F}_{\tau}$. You might also try to prove the result with \mathbb{N}_0 replaced by \mathbb{R}^+ .
- *[3] (Projections in Hilbert space) Let \mathcal{K} be a closed, convex subset of $\mathcal{H} := \mathcal{L}^2(\mathcal{X}, \mathcal{A}, \mu)$. For a fixed f in $\mathcal{H} \setminus \mathcal{K}$ define $\delta := \inf\{\|f - h\|_2 : h \in \mathcal{K}\}$. In this problem you will show that there is an f_0 (unique up to μ -equivalence) in \mathcal{K} for which $\|f - f_0\|_2 = \delta$ and establish some related properties.
 - (i) For all $a, b \in \mathcal{H}$ show that

$$||a+b||_{2}^{2} + ||a-b||_{2}^{2} = 2 ||a||_{2}^{2} + 2 ||b||_{2}^{2}.$$

- (ii) If $h_n \in \mathcal{K}$ are chosen to make $\delta_n := \|f h_n\|_2 \to \delta$, show that $\{h_n : n \in \mathbb{N}\}$ is a Cauchy sequence in \mathcal{H} . Assuming completeness of \mathcal{H} , deduce that there exists some f_0 in \mathcal{K} for which $\|h_n - f_0\|_2 \to 0$. Explain why $\|f - f_0\|_2 = \delta$.
- (iii) For all $h \in \mathcal{K}$ and all $t \in [0,1]$ explain why $||f (1-t)f_0 th||_2 \ge \delta$. Deduce that \mathcal{K} is contained in the closed halfspace $\{h \in \mathcal{H} : \langle h f_0, f_0 f \rangle \ge 0\}$.
- (iv) If \mathcal{K} is actually a closed subspace of \mathcal{H} , deduce that $\langle h, f_0 f \rangle = 0$ for all h in \mathcal{K} .
- *[4] Suppose λ and μ are finite measures defined on a sigma-field \mathcal{A} of subsets of a set \mathfrak{X} . In class I will show that, if $\lambda A \leq \mu A$ for each $A \in \mathcal{A}$ then there exists an \mathcal{A} -measurable function Δ_0 for which $0 \leq \Delta_0 \leq 1$ and

(*)
$$\lambda f = \mu(f\Delta_0)$$
 for all f in $\mathcal{M}^+(\mathfrak{X}, \mathcal{A})$.

(In fact I have already establish this result by martingale methods for the special case where \mathcal{A} is countably generated.)

- (i) Suppose λ and ν are finite measures with $\lambda \ll \nu$. That is, for all $A \in \mathcal{A}$, if $\nu A = 0$ then $\lambda A = 0$. Apply (*) with $\mu = \nu + \lambda$. Deduce that $\mu \Delta_0 \{\Delta_0 \ge 1\} = 0$ then show that $\lambda f = \nu(f\Delta)$ for all $f \in \mathcal{M}^+(\mathcal{X}, \mathcal{A})$, where $\Delta := \Delta_0 \{\Delta_0 < 1\}/(1 - \Delta_0)$ Beware of $\infty - \infty$.
- (ii) Show that the Δ from part (i) is unique up to ν -equivalence.
- (iii) Extend the result to the case where λ and ν are sigma-finite.
- [5] (Hard) Suppose τ is a stopping time for the natural filtration $\{\mathcal{F}_i : i \in \mathbb{N}_0\}$ generated by real-valued random variables $\{X_i : i \in \mathbb{N}_0\}$ on a set Ω . (That is, \mathcal{F}_i is the smallest sigma-field on Ω for which X_j is $\mathcal{F}_i \setminus \mathcal{B}(\mathbb{R})$ -measurable for $0 \leq j \leq i$.) Define new random variables $Z_i = X_{\tau \wedge i}$, for $i \in \mathbb{N}_0$. Define \mathcal{G} to be the smallest sigma-field on Ω for which each Z_i , for $i \in \mathbb{N}_0$, is $\mathcal{G} \setminus \mathcal{B}(\mathbb{R})$ -measurable. Show that $\mathcal{G} = \mathcal{F}_{\tau}$.