Statistics 330b/600b, Math 330b spring 2014 Homework # 9 Due: Thursday 3 April

*[1] Suppose $\{X_n\}$ is a sequence of real-valued random variables for which: to each $\epsilon > 0$ and $\delta > 0$ there exists $n_0 = n_0(\epsilon, \delta)$ such that

 $\mathbb{P}\{|X_n - X_m| > \delta\} < \epsilon \quad \text{for all } m, n \ge n_0.$

Show that there exists a real-valued random variable X for which

 $\mathbb{P}\{|X_n - X| > \delta\} \to 0 \qquad \text{as } n \to \infty$

by the following steps.

(i) Show that there exists an increasing sequence of integers n(k) for which

$$\sum_{k \in \mathbb{N}} \mathbb{P}\{|X_{n(k)} - X_{n(k+1)}| > 2^{-k}\} < \infty$$

- (ii) Deduce that there exists a real-valued random variable X for which $X_{n(k)} \to X$ almost surely as $k \to \infty$.
- (iii) For each $\delta > 0$, deduce that $\mathbb{P}\{|X_{n(k)} X| > \delta\} \to 0$ as $k \to \infty$. Hint: For a deceptively slick proof, explain why $\{|X_{n(k)} X| > \delta\} \to 0$ almost surely then appeal to DC.
- (iv) Conclude that $\mathbb{P}\{|X_n X| > \delta\} \to 0$ for each $\delta > 0$.
- *[2] Let \mathcal{F} be the Borel sigma-field on the set $\Omega = [-1/2, 1/2]$ equipped with $\mathbb{P} =$ Lebesgue measure. Let \mathcal{A} denote the sub-sigma-field of all symmetric Borel sets. That is, a Borel set is in \mathcal{A} iff and only if $\{\omega \in \Omega : \omega \in A\} = \{\omega \in \Omega : -\omega \in A\}.$
 - (i) Show that a function f in $\mathcal{M}^+(\Omega, \mathfrak{F})$ is \mathcal{A} -measurable if and only if $f(\omega) = f(-\omega)$ for all ω .
 - (ii) For each X in $\mathcal{M}^+(\Omega, \mathcal{F})$, show that $\mathbb{P}_{\mathcal{A}}X = (X(\omega) + X(-\omega))/2$ almost surely. Hint: $\int_{-1/2}^{1/2} f(x) dx = \int_{-1/2}^{1/2} f(-x) dx$.
- *[3] Suppose \mathbb{P} and \mathbb{P}_{θ} , for $\theta \in \Theta$, are probability measures defined on a sigma-field \mathcal{F} , for some index set Θ . Suppose also that \mathcal{G} is a sub-sigma-field of \mathcal{F} and that there exist versions of densities

$$\frac{d\mathbb{P}_{\theta}}{d\mathbb{P}} = g_{\theta}(\omega)h(\omega) \quad \text{with } g_{\theta} \in \mathcal{M}^{+}(\Omega, \mathfrak{G}) \text{ for each } \theta$$

for a fixed $h \in \mathcal{M}^+(\Omega, \mathcal{F})$ that doesn't depend on θ . Define H to be a version of $\mathbb{P}_{\mathcal{G}}h$. [That is, choose one H from the \mathbb{P} -equivalence class of possibilities.]

- (i) Show that $\mathbb{P}_{\theta}\{H=0\}=0$ for each θ .
- (ii) Show that $\mathbb{P}_{\theta}\{H = \infty\} = 0$ for each θ . Hint: From $\infty > \mathbb{P}_{\theta}\{H = \infty\}$ deduce that $g_{\theta}\{H = \infty\} = 0$ a.s. $[\mathbb{P}]$.
- (iii) For each X in $\mathcal{M}^+(\Omega, \mathcal{F})$ and some fixed choice of γ of $\mathbb{P}_{\mathcal{G}}(Xh)$ define

$$Y(\omega) = \frac{\gamma(\omega)}{H(\omega)} \{ 0 < H < \infty \}.$$

Show that $\mathbb{P}_{\theta}(X \mid \mathcal{G}) = Y$ a.s. $[\mathbb{P}_{\theta}]$ for every θ .