Statistics 330b/600b, Math 330b spring 2014 Solutions to sheet 2

- [4] Define $\overline{\mathcal{M}}^+ = \overline{\mathcal{M}}^+(\mathfrak{X}, \mathcal{A}, \mu)$ to consist of all those functions f mapping \mathfrak{X} into $[0, \infty]$ for which there exists $g, h \in \mathcal{M}^+ = \mathcal{M}^+(\mathfrak{X}, \mathcal{A}, \mu)$ with $g(x) \leq f(x) \leq g(x) + h(x)$ for all x and $\mu h = 0$. You should NOT assume that $f \in \mathcal{M}^+$. Call the pair g, g + h an \mathcal{M}^+ -sandwich for f.
 - (i) Show that there is no ambiguity in defining $\overline{\mu}: \overline{\mathcal{M}}^+ \to [0, \infty]$ by $\overline{\mu}f = \mu g$ for an arbitrarily chosen \mathcal{M}^+ -sandwich for f. That is, show that if $g_1, g_1 + h_1$ and $g_2, g_2 + h_2$ are both sandwiches for f then $\mu g_1 = \mu g_2$.

For g_i and h_i as given, argue that $g_1 \leq f \leq g_2 + h_2$ so that $\mu g_1 \leq \mu g_2 + \mu h_2 = \mu g_2$. Argue similarly for $\mu g_2 \leq \mu g_1$.

(ii) Define $\overline{\mathcal{A}} := \{D \subseteq \mathfrak{X} : \mathbf{1}_D \in \overline{\mathfrak{M}}^+\}$. Show that $\overline{\mathcal{A}}$ is a sigma-field with $\overline{\mathcal{A}} \supseteq \mathcal{A}$. Show also that if E is a subset of \mathfrak{X} for which $E \subseteq N$, for some $N \in \mathfrak{N}_{\mu}$, then $E \in \overline{\mathcal{A}}$.

For each $A \in \mathcal{A}$ the sandwich $A \leq A \leq A + 0$ gives $A \in \overline{\mathcal{A}}$. That is, $\mathcal{A} \subset \overline{\mathcal{A}}$. To prove that $\overline{\mathcal{A}}$ is a sigma-field it is enough to show it is stable under complements and countable unions.

For complements, if $g \leq \overline{A} \leq g + h$ is a sandwich for $\overline{A} \in \overline{A}$ then by assumption $0 \leq g \leq 1$. We may also replace h by $h \wedge 1$ and still have $A \leq g + h$. Why? Thus there are no $\infty - \infty$ problems in showing that

$$1 - g - h \le A^c \le 1 - g - h + h$$

Thus $G := (1 - g - h)^+$ and G + h provide a sandwich for A^c .

For countable unions, suppose $g_i \leq \overline{A}_i \leq g_i + h_i$ is a sandwich for each i in \mathbb{N} . Then $G := \sup_i g_i \leq \bigcup_i \overline{A}_i \leq G + H$, with $H = \sum_i h_i$ is a sandwich for the union.

For $E \subseteq N$ use the sandwich $0 \leq E \leq N$.

(iii) Show that $\overline{\mathcal{M}}^+ = \mathcal{M}^+(\mathcal{X}, \overline{\mathcal{A}})$. (Sorry for the typo.)

The set $\mathcal{E} := \{[t,\infty] : 0 \leq t < \infty\}$ generates $\mathcal{B}[0,\infty]$. To show that each f in $\overline{\mathcal{M}}^+$ is $\overline{\mathcal{A}}$ -measurable it suffices to show that $\{f \geq t\} \in \overline{\mathcal{A}}$ for each $0 \leq t < \infty$. If $g \leq f \leq g + h$ is a sandwich for f then

$$\{g \ge t\} \le \{f \ge t\} \le \{g \ge t\} + \infty\{h > 0\} \text{ is a sandwich for } \{f \ge t\}.$$

Conversely, to show that $\mathcal{M}^+(\mathfrak{X},\overline{\mathcal{A}}) \subseteq \overline{\mathcal{M}}^+$, start with simple functions. Suppose $f = \sum_i \alpha_i \overline{A}_i \in \mathcal{M}^+_{\text{simple}}(\mathfrak{X},\overline{\mathcal{A}})$. By definition of $\overline{\mathcal{A}}$, each \overline{A}_i has a sandwich $g_i \leq \overline{A}_i \leq g_i + h_i$, so that

$$G := \sum_i \alpha_i g_\leq \sum_i \alpha_i \overline{A}_i \leq G + \sum_i \alpha_i h_i$$

is a sandwich for f.

Write the general f in $\mathcal{M}^+(\mathfrak{X},\overline{\mathcal{A}})$ as a pointwise increasing limit of functions f_n in $\mathcal{M}^+_{\text{simple}}(\mathfrak{X},\overline{\mathcal{A}})$ with sandwiches $g_n \leq f_n \leq g_n + h_n$. Then

$$G := \sup_i g_i \le f \le G + \sum_i h_i$$

is a sandwich for f.

(iv) Show that $\overline{\mu}$ defines an increasing, linear functional on $\overline{\mathcal{M}}^+$ with the Monotone Convergence property.

If $f_1 \leq f_2$ are functions in \mathcal{M}^+ with sandwiches $g_i \leq f_i \leq g_i + h_i$ then

$$g_1 \le G := g_1 \lor g_2 \le f_2 \le G + h_2$$

so that $\overline{\mu}f_1 = \mu g_1 \leq \mu G = \overline{\mu}f_2$. If $\alpha_i \in \mathbb{R}^+$ and $f_i \in \overline{\mathcal{M}}^+$ with sandwiches $g_i \leq f_i \leq g_i + h_i$, for i = 1, 2, then

$$G := \alpha_1 g_1 + \alpha_2 g_2 \le \alpha_1 f_1 + \alpha_2 f_2 \le G + \alpha_1 h_1 + \alpha_2 h_2$$

is also a sandwich and

$$\overline{\mu}(\alpha_1 f_1 + \alpha_2 f_2) = \mu G = \alpha_1 \mu g_1 + \alpha_2 \mu g_2 = \alpha_1 \overline{\mu} f_1 + \alpha_2 \overline{\mu} f_2.$$

Finally, if a sequence f_n in $\overline{\mathcal{M}}^+$, with sandwiches $g_n \leq f_n \leq g_n + h_n$, increases pointwise to f then $G_n := \max_{i \leq n} g_i$ increases pointwise to $G := \sup_{i \in \mathbb{N}} g_i$ then $G_n \leq f_n \leq G_n + H$, where $H = \sum_{i \in \mathbb{N}} h_i$, so that

$$\overline{\mu}f_n = \mu G_n \uparrow \mu G = \overline{\mu}f,$$

the last equality coming from the fact that $G \leq f \leq G + H$ is a sandwich for f.

(v) Show that the restriction of $\overline{\mu}$ to (the indicator functions of sets in) \overline{A} is a measure and that $\overline{\mu}$ is the integral with respect to that measure.

As several students pointed out, this part is just Theorem 2.13 of UGMTP.