Statistics 330b/600b, Math 330b spring 2015 Homework # 1 Due: Thursday 22 January

Please attempt at least the starred problems. Please explain your reasoning.

*[1] Suppose T maps a set \mathfrak{X} into a set \mathfrak{Y} . For each $B \subseteq \mathfrak{Y}$ and $A \subseteq \mathfrak{X}$ define $T^{-1}B := \{x \in \mathfrak{X} : T(x) \in B\}$. and $T(A) := \{T(x) : x \in A\}$. Four of the following eight assertions are always true and four are not always true.

(i)
$$T(\cup_i A_i) = \cup_i T(A_i)$$
 (ii) $T^{-1}(\cup_i B_i) = \cup_i T^{-1}(B_i)$
(iii) $T(\cap_i A_i) = \cap_i T(A_i)$ (iv) $T^{-1}(\cap_i B_i) = \cap_i T^{-1}(B_i)$
(v) $T(A^c) = (T(A))^c$ (vi) $T^{-1}(B^c) = (T^{-1}(B))^c$
(vii) $T^{-1}(T(A)) = A$ (viii) $T(T^{-1}(B)) = B$

Provide counterexamples for each of the false assertions. (Hint: All the counterexamples can be constructed using the special case shown in the picture.)

- *[2] Suppose x and y are two distinct points in a set \mathfrak{X} and \mathcal{E} is a set of subsets of \mathfrak{X} with the property that $\mathbf{1}_E\{x\} = \mathbf{1}_E\{y\}$ for all $E \in \mathcal{E}$. Show that $\mathbf{1}_B\{x\} = \mathbf{1}_B\{y\}$ for all $B \in \sigma(\mathcal{E})$. Hint: Show that $\mathfrak{B}_0 = \{B \in \sigma(\mathcal{E}) : \mathbf{1}_B\{x\} = \mathbf{1}_B\{y\}\}$ is a sigma-field.
- *[3] Let \mathcal{G} denote the set of all open subsets of \mathbb{R}^2 and \mathcal{R} denote the set of all closed rectangles in \mathbb{R}^2 of the form $[a_1, a_2] \times [b_1, b_2]$ with a_1, a_2, b_1 and b_2 all rational. Show that $\sigma(\mathcal{G}) = \sigma(\mathcal{R})$.
- [4] How many different sigma-fields are there on the set $\mathfrak{X} = \{1, 2, 3, 4, 5\}$?
- [5] Let A_1, \ldots, A_N be events in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. For each subset J of $\{1, 2, \ldots, N\}$ write A_J for $\bigcap_{i \in J} A_i$. Define $S_k := \sum_{|J|=k} \mathbb{P}A_J$, where |J| denotes the number of indices in J. For $0 \le m \le n$ define

$$B_m = \{ \text{exactly } m \text{ of the } A_i \text{'s occur} \} = \{ \omega \in \Omega : \sum_{i=1}^N \mathbf{1}_{A_i}(\omega) = m \}$$

(i) Explain why

$$\mathbf{1}_{B_m} = \sum_{|J|=m} \prod_{i \in J} \mathbf{1}_{A_i} \prod_{j \in J^c} (1 - \mathbf{1}_{A_j}).$$

(ii) Deduce that

$$\mathbf{1}_{B_m} = \sum_{\ell=m}^N (-1)^{\ell-m} \sum_{|K|=\ell} \binom{\ell}{m} \mathbf{1}_{A_K}.$$

(iii) Take expectations to deduce that

$$\mathbb{P}B_m = \binom{m}{m} S_m - \binom{m+1}{m} S_{m+1} + \dots \pm \binom{N}{m} S_N.$$

Compare with the method suggested in UGMTP Problem 1.1. (You may use that method if you prefer it.)

