Statistics 330b/600b, Math 330b spring 2015 Homework # 10 Due: Thursday 9 April

- *[1] Let $\{(Z_n, \mathcal{F}_n) : n \in \mathbb{N}_0\}$ be a submartingale and τ be a stopping time. Define $X_n = Z_{\tau \wedge n}$. Show that $\{(X_n, \mathcal{F}_n) : n \in \mathbb{N}_0\}$ is also a submartingale. Hint: For F in \mathcal{F}_{n-1} , consider separately the contributions to $\mathbb{P}X_nF$ and $\mathbb{P}X_{n-1}F$ from the regions $\{\tau \leq n-1\}$ and $\{\tau \geq n\}$.
- *[2] Let τ be a stopping time for a filtration $\{\mathcal{F}_i : 0 \le i \le N\}$, with $0 \le \tau \le N$. For an integrable random variable X, define $X_i := \mathbb{P}(X \mid \mathcal{F}_i)$. Show that

$$\mathbb{P}(X \mid \mathcal{F}_{\tau}) = \sum_{i=0}^{N} \{\tau = i\} X_i = X_{\tau} \quad \text{almost surely.}$$

*[3] (Birnbaum and Marshall, 1961) Let $0 = X_0, X_1, \ldots, X_N$ be nonnegative integrable random variables that are adapted to a filtration $\{\mathcal{F}_i : 0 \le i \le N\}$. Suppose there exist constants θ_i , with $0 \le \theta_i \le 1$, for which

(*)
$$\mathbb{P}(X_i \mid \mathcal{F}_{i-1}) \ge \theta_i X_{i-1} \quad \text{for } 0 \le i \le N.$$

(Interpret this inequality to mean that there exist nonnegative, \mathcal{F}_{i-1} -measurable random variables Y_{i-1} for which $\mathbb{P}(X_i | \mathcal{F}_{i-1}) = Y_{i-1} + \theta_i X_{i-1}$ almost surely.) Let $C_1 \geq C_2 \geq \cdots \geq C_{N+1} = 0$ be constants. Prove the inequality

(**)
$$\mathbb{P}\{\max_{i\leq N} C_i X_i \geq 1\} \leq \sum_{i=1}^N (C_i - \theta_{i+1} C_{i+1}) \mathbb{P} X_i,$$

by following these steps.

- (i) Define $\eta_i = W_i W_{i-1}$, where $W_i = C_i X_i$. (Thus $W_i = \eta_1 + \dots + \eta_i$.) Show that $\mathbb{P}(\eta_i \mid \mathcal{F}_{i-1}) \leq C_i Y_{i-1}$ almost surely, for $1 \leq i \leq N$.
- (ii) Deduce that $W_i \leq M_i + A_i$, where $\{(M_i, \mathcal{F}_i)\}$ is a martingale with $M_0 = 0$ and $A_i := \sum_{j=1}^i C_j Y_{j-1}$ is an increasing sequence.
- (iii) Use the Stopping Time Lemma to show that the left-hand side of inequality (**) is less than $\mathbb{P}A_N$, then rearrange the sum for $\mathbb{P}A_N$ to get the asserted upper bound.
- [4] (Hard) Suppose τ is a stopping time for the natural filtration $\{\mathcal{F}_i : i \in \mathbb{N}_0\}$ generated by real-valued random variables $\{X_i : i \in \mathbb{N}_0\}$ on a set Ω . (That is, \mathcal{F}_i is the smallest sigma-field on Ω for which X_j is $\mathcal{F}_i \setminus \mathcal{B}(\mathbb{R})$ -measurable for $0 \leq j \leq i$.) Define new random variables $Z_i = X_{\tau \wedge i}$, for $i \in \mathbb{N}_0$. Define \mathcal{G} to be the smallest sigma-field on Ω for which each Z_i , for $i \in \mathbb{N}_0$, is $\mathcal{G} \setminus \mathcal{B}(\mathbb{R})$ -measurable. Show that $\mathcal{G} = \mathcal{F}_{\tau}$.

References

Birnbaum, Z. W. and A. W. Marshall (1961). Some multivariate Chebyshev inequalities with extensions to continuous parameter processes. Annals of Mathematical Statistics 32(3), 687–703.