Statistics 330b/600b, Math 330b spring 2015 Homework # 11 Due: Thursday 16 April

- *[1] Suppose $\{(X_i, \mathcal{F}_i) : i \in \mathbb{N}_0\}$ is a martingale (on $\Omega, \mathcal{F}, \mathbb{P}$) with $\sup_i \mathbb{P}X_i^2 = K < \infty$. By the following steps show that X_i converges almost surely and in \mathcal{L}^2 to some random variable Z in $\mathcal{L}^2(\Omega, \mathcal{F}_\infty, \mathbb{P})$, where $\mathcal{F}_\infty = \sigma (\cup_{i \in \mathbb{N}_0} \mathcal{F}_i)$.
 - (i) For $i \ge 1$ define $\xi_i = X_i X_{i-1}$. Show that $\sum_{i \in \mathbb{N}_0} \mathbb{P}\xi_i^2 < \infty$. Deduce that $\{X_i\}$ is Cauchy sequence, which converges in \mathcal{L}^2 to some Z in $\mathcal{L}^2(\Omega, \mathcal{F}_{\infty}, \mathbb{P})$.
 - (ii) For m < n define $\Delta_{m,n} = \max_{m < i < n} |X_i X_m|$ and $\Delta_{m,\infty} = \sup_{i > m} |X_i X_m|$. Prove that

$$\mathbb{P}\Delta_{m,n}^2 \leq \delta_m^2 := \sum\nolimits_{i > m} \mathbb{P}\xi_i^2 \to 0 \qquad \text{as } m \to \infty.$$

Deduce that $\|\Delta_{m,\infty}\|_2 \leq \delta_m^2$.

(iii) Define $D_m = \sup_{i>m} |X_i - Z|$. Show that

$$||D_m||_2 \le \delta_m + ||X_m - Z||_2 \to 0 \quad \text{as } m \to \infty.$$

- (iv) Deduce that $\mathbb{P} \limsup_i |X_i Z|^2 = 0$ and $|X_i Z| \to 0$ almost surely.
- [2] Use Konecker's lemma (UGMTP Problem 4.22) and Problem [1] to reprove SLLN2: for independent random variables $\{\xi_i : i \in \mathbb{N}\}$ with $\sum_i \mathbb{P}\xi_i^2 < \infty$ and $\mathbb{P}\xi_i = 0$ for each i,

$$n^{-1}\sum_{i\leq n}\xi_i\to 0$$
 almost surely.

Hint: Consider $X_n = \sum_{I < n} \xi_i / i$.

- *[3] Let \mathcal{F} be a countably generated sigma-field on a set Ω , that is, $\mathcal{F} = \sigma(\mathcal{E})$, where $\mathcal{E} = \{E_i : i \in \mathbb{N}\}$. Define $\mathcal{F}_k = \sigma\{E_1, \dots, E_k\}$. Note that $\mathcal{F} = \sigma(\bigcup_{k \in \mathbb{N}} \mathcal{F}_k)$.
 - (i) Show that there is a finite partition π_k of Ω into disjoint \mathcal{F}_k -measurable sets for which $\mathcal{F}_k = \sigma(\pi_k)$. Also show that a real-valued function g is \mathcal{F}_k -measurable iff g is constant on each A in π_k .
 - (ii) If $f \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ show that

$$\mathbb{P}_{\mathcal{F}_k}f = f_k(\omega) := \sum_{A \in \pi_k} \{\omega \in A\} \mathbb{P}_A f \quad \text{where } \mathbb{P}_A f = \{\mathbb{P}A > 0\} \mathbb{P}(fA) / \mathbb{P}A.$$

- (iii) Show that $\{(f_k, \mathfrak{F}_k) : k \in \mathbb{N}\}$ is a martingale.
- (iv) Now suppose $f \geq 0$ and $\mathbb{P}f < \infty$. Explain why $\{f_k\}$ converges almost surely to some nonnegative f_{∞} in $\mathcal{L}_1(\Omega, \mathcal{F}, \mathbb{P})$.
- (v) For each $m \in \mathbb{N}$ define $f_{k,m} = \mathbb{P}_{\mathcal{F}_k}(m \wedge f)$. Show that $\{f_{k,m} : k \in \mathbb{N}\}$ converges almost surely and in \mathcal{L}^1 to some nonnegative $f_{\infty,m}$ in $\mathcal{L}^1(\omega, \mathcal{F}, \mathbb{P})$.
- (vi) Show that $\mathbb{P}f = \mathbb{P}f_k \ge \mathbb{P}f_{k,m} = \mathbb{P}(m \land f)$ for each m. Deduce that $\mathbb{P}f_k \to \mathbb{P}f$ and $\mathbb{P}|f_k f| \to 0$.
- (vii) Show that $\mathbb{P}f_{\infty}E = \mathbb{P}fE$ for each $E \in \bigcup_k \mathfrak{F}_k$. Hint: Consider $E \in \mathfrak{F}_\ell$ and $\mathbb{P}f_kE$ for $k \geq \ell$. Deduce that $f_{\infty} = f$ almost surely.