Statistics 330b/600b, Math 330b spring 2015 Homework # 12 Due: Thursday 23 April

*[1] Let (\mathcal{Y}, d) be a metric space with a countable dense subset $\{y_i : i \in \mathbb{N}\}$. For a fixed $\delta > 0$ define functions $g_0 = \delta$ and $g_i(y) = (1 - d(y, y_i)/\delta)^+$. Define

$$G_N(y) := \sum\nolimits_{0 \leq i \leq N} g_i(y) \quad \text{and} \quad \ell_{i,N}(y) = g_i(y)/G_N(y) \qquad \text{for } 0 \leq i \leq N.$$

Note that $\sum_{0 \le i \le N} \ell_{i,N}(y) = 1$ for all y.

- (i) Show that $\ell_{i,N} \in BL(\mathcal{X})$ for all i and N.
- (ii) Show that $\ell_{0,N}(y) \downarrow L_{\delta}(y)$ as $N \to \infty$, with $L_{\delta}(y) \leq \delta$ for each y.
- *[2] Suppose $(\mathfrak{X}, d_{\mathfrak{X}})$ and $(\mathfrak{Y}, d_{\mathfrak{Y}})$ are both separable metric spaces. Define a metric on $\mathfrak{X} \times \mathfrak{Y}$ by $d((x_1, y_1), (x_2, y_2)) := \max(d_{\mathfrak{X}}(x_1, x_2), d_{\mathfrak{Y}}(y_1, y_2))$. Suppose also that we have measurable functions $X_n : (\Omega_n, \mathfrak{F}_n) \to (\mathfrak{X}, \mathfrak{B}(\mathfrak{X}))$ and $Y_n : (\Omega_n, \mathfrak{F}_n) \to (\mathfrak{Y}, \mathfrak{B}(\mathfrak{Y}))$ for which

$$\mathbb{P}_n g(X_n) h(Y_n) \to \mu^{x,y} g(x) h(y)$$
 for all $g \in BL(\mathfrak{X})$ and $h \in BL(\mathfrak{Y})$,

where μ is some probability measure on $\mathcal{B}(\mathfrak{X} \times \mathfrak{Y})$. Follow these steps to show that $(X_n, Y_n) \rightsquigarrow \mu$.

(i) Fix a $\delta > 0$ and an f in BL($\mathfrak{X} \times \mathfrak{Y}, d$). With $\ell_{i,N}$ as in Problem [1], define $f_N(x, y) = \sum_{1 \le i \le N} f(x, y_i) \ell_{i,N}(y)$. For each f in BL($\mathfrak{X} \times \mathfrak{Y}, d$) show that

 $|f(x,y) - f_N(x,y)| \le ||f||_{\mathrm{BL}} (\delta + \ell_{0,N}(y)).$

- (ii) Deduce that $\limsup_{n} |\mathbb{P}_{n}f(X_{n}, Y_{n}) \mu f| \leq 2 ||f||_{\mathrm{BL}} (\delta + \mu \ell_{0,N}(y)).$
- (iii) Complete the proof: show $(X_n, Y_n) \rightsquigarrow \mu$.
- (iv) For independent X_n and Y_n with $X_n \rightsquigarrow P$ and $Y_n \rightsquigarrow Q$, prove $(X_n, Y_n) \rightsquigarrow P \otimes Q$.
- [3] Let $\{X_{n,i}\}$ be a triangular array of random variables, independent within each row and satisfying
 - (a) $\max_i |X_{n,i}| \to 0$ in probability,
 - (b) $\sum_{i} \mathbb{P}X_{n,i}\{|X_{n,i}| \leq \epsilon\} \to \mu \text{ for each } \epsilon > 0,$
 - (c) $\sum_{i} \operatorname{var}(X_{n,i} \{ |X_{n,i}| \le \epsilon \}) \to \sigma^2 < \infty$ for each $\epsilon > 0$.
 - (i) Show that there exists a sequence of positive numbers $\{\epsilon_n\}$ that tends to zero slowly enough that
 - (d) $\mathbb{P}\{\max_i |X_{n,i}| > \epsilon_n\} \to 0$,
 - (e) $\sum_{i} \mathbb{P}X_{n,i}\{|X_{n,i}| \le \epsilon_n\} \to \mu,$
 - (f) $\sum_{i} \operatorname{var} (X_{n,i} \{ |X_{n,i}| \le \epsilon_n \}) \to \sigma^2.$
 - (ii) Deduce that $\sum_{i} X_{n,i} \rightsquigarrow N(\mu, \sigma^2)$. Hint: Consider $\eta_{n,i} := X_{n,i} \{ |X_{n,i}| \le \epsilon_n \}$ and $\xi_{n,i} := \eta_{n,i} \mathbb{P}\eta_{n,i}$.

- *[4] Suppose $\{X_n\}$ is a sequence of real-valued random variables and P is a probability measure on $\mathcal{B}(\mathbb{R})$ for which $\mathbb{P}_n\{X_n \leq t\} \to P(-\infty, t]$ for each t with $P\{t\} = 0$. Show that $X_n \rightsquigarrow P$. Hint: Approximate an f in BL(\mathbb{R}) by a function of the form $f_N(x) = \sum_{j=1}^N f(x_j)\{x_j < x \leq x_{j+1}\}$, for a suitably chosen set of P-continuity points $-\infty < x_1 < x_2 < \cdots < x_N < x_{N+1} < \infty$.
- [5] [Warning: very messy.] In class I proved: if $X_n \rightsquigarrow P$ and $d(X_n, Y_n) \leq \Delta_n \to 0$ in probability then $Y_n \rightsquigarrow P$. I showed that $\mathbb{P}_n f(Y_n) \to Pf$ for each $f \in BL(\mathfrak{X})$, starting from $\mathbb{P}_n f(X_n) \to Pf$. Repeat the proof assuming only that f is just bounded and continuous and $\mathbb{P}_n f(X_n) \to Pf$.

Please do not use any of the facts I established using the BL definition. The point is to show you the advantages of starting from BL rather than from the more traditional approach using bounded, continuous functions.

- [6] Suppose H is a continuously differentiable function on \mathbb{R} which is zero outside some bounded interval. For a given bounded measurable function f on \mathbb{R} , define $g(x) := \int f(y)H(x-y) \, dy$.
 - (i) Show (rigorously) that g is differentiable with $g'(x) = \int f(y)H'(x-y) dy$.
 - (ii) Explain why g belongs to $\mathcal{C}^{\infty}(\mathbb{R})$ if $H \in \mathcal{C}^{\infty}(\mathbb{R})$.