Statistics 330b/600b, Math 330b spring 2015 Homework # 2 Due: Thursday 29 January

Please attempt at least the starred problems. Please explain your reasoning.

- *[1] Suppose μ is a countably additive measure defined on a sigma-field \mathcal{A} on \mathfrak{X} . Define \mathcal{A}_{μ} to be the set of all $D \subseteq \mathfrak{X}$ for which there exists sets $A, B \in \mathcal{A}$ with $B \subseteq D \subset A$ and $\mu(AB^c) = 0$. Call A, B a μ -sandwich for D.
 - (i) If a set $D \in A_{\mu}$ has two μ -sandwiches, A_1, B_1 and A_2, B_2 , show that $\mu A_1 = \mu A_2 = \mu B_1 = \mu B_2$.
 - (ii) Show that \mathcal{A}_{μ} is a sigma-field with $\mathcal{A} \subseteq \mathcal{A}_{\mu}$.
 - (iii) Define $\tilde{\mu}$ on \mathcal{A}_{μ} by $\tilde{\mu}D = \mu B$ for any choice of μ -sandwich A, B for D. Show that $\tilde{\mu}$ is a countably additive measure on \mathcal{A}_{μ} for which $\tilde{\mu}D = \mu D$ if $D \in \mathcal{A}$.
- *[2] Suppose \mathcal{A} is a sigma-field on a set \mathfrak{X} and \mathcal{B} is a sigma-field on a set \mathfrak{Y} . Suppose also that T is an $\mathcal{A}\backslash \mathcal{B}$ -measurable function from \mathfrak{X} to \mathfrak{Y} . Let μ be a countably additive measure on \mathcal{A} .
 - (i) For each $h \in \mathcal{M}^+(\mathcal{X}, \mathcal{A})$ and $g \in \mathcal{M}^+(\mathcal{Y}, \mathcal{B})$ define $\nu_h(g) = \mu(h(x)g(Tx))$. Show that each ν_h corresponds to an integral with respect to a countably additive measure on \mathcal{B} .
 - (ii) Suppose g is a function in $\mathcal{M}^+(\mathcal{Y}, \mathcal{B})$ for which $\nu_1(g) = 0$. (Here ν_1 is the ν_h for h equal to the constant function 1.) Show that $\nu_h g = 0$ for all $h \in \mathcal{M}^+(\mathcal{X}, \mathcal{A})$.
- *[3] Suppose $f_1, \ldots, f_k \in \mathcal{M}^+(\mathcal{X}, \mathcal{A})$ and $\theta_1, \ldots, \theta_k$ are strictly positive numbers that sum to one. Let μ be a measure on \mathcal{A} . Show that $\mu \prod_{i \leq k} f_i^{\theta_i} \leq \prod_{i \leq k} (\mu f_i)^{\theta_i}$ by following these steps.
 - (i) Explain why the inequality is trivially true if $\mu f_i = 0$ for at least one *i* or if $\mu f_i = \infty$ for at least one *i* (and all the other μf_j are strictly positive).
 - (ii) Explain why there is no loss of generality in assuming that $\mu f_i = 1$ for each i and $f_i(x) < \infty$ for each x and i.
 - (iii) For all $a_1, \ldots, a_k \in \mathbb{R}^+$, show that $\prod_{i \leq k} a_i^{\theta_i} \leq \sum_{i \leq k} \theta_i a_i$. Hint: First dispose of the trivial case where at least one a_i is zero, then rewrite the inequality using $b_i = \log a_i$. You do not need to reprove that the log function is concave on $(0, \infty)$.
 - (iv) Complete the proof by considering the inequality from (iii) with $a_i = f_i(x)$.
- [4]
 - (i) For all nonnegative real numbers a_1, \ldots, a_n show that

$$\sum_{i} a_i \leq \max_i a_i + \sum_{i < j} \min(a_i, a_j) \leq \sum_{i} a_i + \sum_{i < j < k} \min(a_i, a_j, a_k).$$

Hint: First explain why, without loss of generality, you may assume that $a_1 \ge a_2 \ge \cdots \ge a_n \ge 0$.

(ii) Suppose f_1, \ldots, f_n are functions in $\mathcal{M}^+(\mathfrak{X}, \mathcal{A})$ and μ is a measure on \mathcal{A} for which $\mu f_i < \infty$ for each *i*. Show that

$$\sum_{i} \mu f_{i} - \sum_{i < j} \mu(f_{i} \wedge f_{j}) \leq \mu \left(\max_{i} f_{i} \right)$$
$$\leq \sum_{i} \mu f_{i} - \sum_{i < j} \mu(f_{i} \wedge f_{j}) + \sum_{i < j < k} \mu(f_{i} \wedge f_{j} \wedge f_{k}).$$

Here \wedge denotes pointwise minimum. Note: Expressions like $f_1(x) - f_2(x) \wedge f_3(x)$ might not be well defined for all x.