
Statistics 330b/600b, Math 330b spring 2015
Homework # 3
Due: Thursday 5 February

Please attempt at least the starred problems. Please explain your reasoning. If
you solve Problem [2] you can skip Problem [1] (but you might find some clues by
first looking at the easier Problem).

*[1] For f in L1 := L1(X,A, µ) define ‖f‖1 = µ|f |. Let {fn} be a Cauchy sequence
in L1, that is, ‖fn − fm‖1 → 0 as min(m,n) → ∞. Show that there exists an
f in L1 for which ‖fn − f‖1 → 0, by following these steps. Note: Don’t confuse
Cauchy sequences (in L1 distance) of functions with Cauchy sequences of real num-
bers.

(i) For each k ∈ N there exists an n(k) ∈ N for which: ‖fn − fm‖1 < 2−k when
min(m,n) ≥ n(k). Without loss of generality assume that n(k) is strictly increasing
with k. Define H(x) :=

∑∞
k=1 |fn(k)(x)− fn(k+1)(x)|. Show that µH <∞.

(ii) Define gk = fn(k). Show that {gk(x) : k ∈ N} is a Cauchy sequence of real numbers
for each x in the set {H <∞}. Explain why

f(x) = lim inf
k→∞

gk(x){H(x) <∞}

is a real-valued, A-measurable function for which

H(x) ≥ |gk(x)− f(x)| → 0 a.e.[µ].

(iii) Deduce that ‖gk − f‖1 → 0 as k →∞.

(iv) Show that f belongs to L1(µ) and ‖fn − f‖1 → 0 as n→∞.

[2] Let (X,A, µ) be a measure space with µX <∞. Write R for the set of all A\B(R)-
measurable functions from X into R.

(i) Define ψ(t) = 1 − e−t for 0 ≤ t < ∞ and ψ(∞) = 1. For f, g ∈ R define
d(f, g) = µψ(|f − g|). Show that d is a semi-metric on R for which: d(f, g) = 0
iff f = g a.e.[µ]; and d(fn, 0)→ 0 iff µ{x : |fn(x)| > ε} → 0 for every ε > 0.

(ii) Show that d is complete: if {fn : n ∈ N} ⊂ R and d(fn, fm)→ 0 as min(m,n)→∞
then there exists an f ∈ R for which d(fn, f)→ 0.

*[3] For each θ in [0, 1] define µθ,n to be the Binomial(n, θ) distribution. That is,

µθ,nf =
∑n

k=0
f(k)

(
n

k

)
θk(1− θ)n−k.

You may assume without proof that
∫
xdµθ,n = nθ and

∫
(x−nθ)2dµθ,n = nθ(1−θ).

Let g be a continuous function defined on [0, 1]. Remember that g must also be
uniformly continuous: for each fixed ε > 0 there exists a δε > 0 such that

|g(s)− g(t)| ≤ ε whenever |s− t| ≤ δε, for s, t in [0, 1].

Remember also that |g| must be uniformly bounded, say, supt |g(t)| =M <∞.

(i) Show that pn(θ) := µθ,ng(x/n) is a polynomial in θ.

(ii) Show that |g(x/n)− g(θ)| ≤ ε+ 2M |x− nθ|2/(nδε)2 for 0 ≤ x ≤ n.

(iii) Deduce that sup0≤θ≤1 |pn(θ) − g(θ)| < 2ε for n large enough. That is, deduce
that g(·) can be uniformly approximated by polynomials over the range [0, 1], a
result known as the Weierstrass approximation theorem.


