Statistics 330b/600b, Math 330b spring 2015

Homework # 3

Due: Thursday 5 February

Please attempt at least the starred problems. Please explain your reasoning. If you solve Problem [2] you can skip Problem [1] (but you might find some clues by first looking at the easier Problem).

- *[1] For f in $\mathcal{L}^1 := \mathcal{L}^1(\mathcal{X}, \mathcal{A}, \mu)$ define $||f||_1 = \mu|f|$. Let $\{f_n\}$ be a Cauchy sequence in \mathcal{L}^1 , that is, $||f_n - f_m||_1 \to 0$ as $\min(m, n) \to \infty$. Show that there exists an f in \mathcal{L}^1 for which $||f_n - f||_1 \to 0$, by following these steps. Note: Don't confuse Cauchy sequences (in \mathcal{L}^1 distance) of functions with Cauchy sequences of real numbers.
 - (i) For each $k \in \mathbb{N}$ there exists an $n(k) \in \mathbb{N}$ for which: $||f_n f_m||_1 < 2^{-k}$ when $\min(m, n) \ge n(k)$. Without loss of generality assume that n(k) is strictly increasing with k. Define $H(x) := \sum_{k=1}^{\infty} |f_{n(k)}(x) f_{n(k+1)}(x)|$. Show that $\mu H < \infty$.
 - (ii) Define $g_k = f_{n(k)}$. Show that $\{g_k(x) : k \in \mathbb{N}\}$ is a Cauchy sequence of real numbers for each x in the set $\{H < \infty\}$. Explain why

$$f(x) = \liminf_{k \to \infty} g_k(x) \{ H(x) < \infty \}$$

is a real-valued, A-measurable function for which

$$H(x) \ge |g_k(x) - f(x)| \to 0 \qquad \text{a.e.}[\mu].$$

- (iii) Deduce that $||g_k f||_1 \to 0$ as $k \to \infty$.
- (iv) Show that f belongs to $\mathcal{L}^1(\mu)$ and $||f_n f||_1 \to 0$ as $n \to \infty$.
- [2] Let $(\mathfrak{X}, \mathcal{A}, \mu)$ be a measure space with $\mu \mathfrak{X} < \infty$. Write \mathfrak{R} for the set of all $\mathcal{A} \setminus \mathcal{B}(\mathbb{R})$ measurable functions from \mathfrak{X} into \mathbb{R} .
 - (i) Define $\psi(t) = 1 e^{-t}$ for $0 \le t < \infty$ and $\psi(\infty) = 1$. For $f, g \in \mathbb{R}$ define $d(f,g) = \mu\psi(|f-g|)$. Show that d is a semi-metric on \mathbb{R} for which: d(f,g) = 0 iff f = g a.e. $[\mu]$; and $d(f_n, 0) \to 0$ iff $\mu\{x : |f_n(x)| > \epsilon\} \to 0$ for every $\epsilon > 0$.
 - (ii) Show that d is complete: if $\{f_n : n \in \mathbb{N}\} \subset \mathbb{R}$ and $d(f_n, f_m) \to 0$ as $\min(m, n) \to \infty$ then there exists an $f \in \mathbb{R}$ for which $d(f_n, f) \to 0$.
- *[3] For each θ in [0, 1] define $\mu_{\theta,n}$ to be the Binomial (n, θ) distribution. That is,

$$\mu_{\theta,n}f = \sum_{k=0}^{n} f(k) \binom{n}{k} \theta^k (1-\theta)^{n-k}.$$

You may assume without proof that $\int x d\mu_{\theta,n} = n\theta$ and $\int (x-n\theta)^2 d\mu_{\theta,n} = n\theta(1-\theta)$. Let g be a continuous function defined on [0,1]. Remember that g must also be uniformly continuous: for each fixed $\epsilon > 0$ there exists a $\delta_{\epsilon} > 0$ such that

 $|g(s) - g(t)| \le \epsilon$ whenever $|s - t| \le \delta_{\epsilon}$, for s, t in [0, 1].

Remember also that |g| must be uniformly bounded, say, $\sup_t |g(t)| = M < \infty$.

- (i) Show that $p_n(\theta) := \mu_{\theta,n} g(x/n)$ is a polynomial in θ .
- (ii) Show that $|g(x/n) g(\theta)| \le \epsilon + 2M|x n\theta|^2/(n\delta_{\epsilon})^2$ for $0 \le x \le n$.
- (iii) Deduce that $\sup_{0 \le \theta \le 1} |p_n(\theta) g(\theta)| < 2\epsilon$ for n large enough. That is, deduce that $g(\cdot)$ can be uniformly approximated by polynomials over the range [0, 1], a result known as the Weierstrass approximation theorem.