Statistics 330b/600b, Math 330b spring 2015

Homework # 4

Due: Thursday 12 February

For Problems [2] and [4], $(\mathfrak{X}, \mathcal{A}, \mu)$ is a measure space and Ψ is a convex, increasing function for which $\Psi(0) = 0$ and $\Psi(x) \to \infty$ as $x \to \infty$. For convenience, define $\Psi(\infty) = \infty$. The set $\mathcal{L}^{\Psi} = \mathcal{L}^{\Psi}(\mathfrak{X}, \mathcal{A}, \mu)$ is defined to be the set of all realvalued \mathcal{A} -measurable functions f on \mathfrak{X} for which there exists some positive real c_0 (depending on f) such that $\mu \Psi(|f|/c_0) < \infty$. For f in \mathcal{L}^{Ψ}

 $||f||_{\Psi} := \inf\{c > 0 : \mu \Psi(|f|/c) \le 1\}.$

- *[1] Let $\{f_n : n \in \mathbb{N}\}$ be a sequence in $\mathcal{M}^+(\mathcal{X}, \mathcal{A})$ and μ be a measure on \mathcal{A} .
 - (i) Suppose $\lim_{n\to\infty} \mu\{x : f_n(x) > \epsilon\} = 0$ for each $\epsilon > 0$. Show that there exists an increasing sequence $\{n(k) : k \in \mathbb{N}\}$ for which $\sum_{k\in\mathbb{N}} \mu\{f_{n(k)} > 2^{-k}\} < \infty$. Deduce that $f_{n(k)} \to 0$ a.e.[μ].
 - (ii) Now suppose $\mu \mathfrak{X} < \infty$ and $f_n \to 0$ a.e.[μ]. Show that $\mu \{ \sup_{i \ge n} f_i > \epsilon \} \to 0$ for each $\epsilon > 0$. Hint: Monotonicity.
- *[2] Suppose $f \in \mathcal{L}^{\Psi}(\mathfrak{X}, \mathcal{A}, \mu)$ and $c = ||f||_{\Psi} > 0$. Show that $\mu \Psi(|f|/c) \leq 1$. Hint: DC. For extra brownie points, find an example where the last inequality is strict, or prove that there must always be equality.
- *[3] (Projections in Hilbert space, almost) Let \mathcal{K} be a closed, convex subset of $\mathcal{H} := \mathcal{L}^2(\mathcal{X}, \mathcal{A}, \mu)$. For a fixed f in $\mathcal{H} \setminus \mathcal{K}$ define $\delta := \inf\{\|f h\|_2 : h \in \mathcal{K}\}$. In this problem you will show that there is an f_0 (unique up to μ -equivalence) in \mathcal{K} for which $\|f f_0\|_2 = \delta$ and establish some related properties.
 - (i) For all $a, b \in \mathcal{H}$ show that

$$|a+b||_{2}^{2} + ||a-b||_{2}^{2} = 2 ||a||_{2}^{2} + 2 ||b||_{2}^{2}.$$

- (ii) If $h_n \in \mathcal{K}$ are chosen to make $\delta_n := \|f h_n\|_2 \to \delta$, show that $\{h_n : n \in \mathbb{N}\}$ is a Cauchy sequence in \mathcal{H} . Invoking completeness of \mathcal{H} , deduce that there exists some f_0 in \mathcal{K} for which $\|h_n f_0\|_2 \to 0$. Explain why $\|f f_0\|_2 = \delta$.
- (iii) For all $h \in \mathcal{K}$ and all $t \in [0, 1]$ explain why $||f (1 t)f_0 th||_2 \ge \delta$. Deduce that \mathcal{K} is contained in the closed halfspace $\{h \in \mathcal{H} : \langle h f_0, f_0 f \rangle \ge 0\}$.
- (iv) If \mathcal{K} is actually a closed subspace of \mathcal{H} , deduce that $\langle h, f_0 f \rangle = 0$ for all h in \mathcal{K} .
- [4] Let $\{f_n\}$ be a Cauchy sequence in \mathcal{L}^{Ψ} , that is, $\|f_n f_m\|_{\Psi} \to 0$ as $\min(m, n) \to \infty$. In particular, there exists an increasing sequence $\{n(k) : k \in \mathbb{N}\}$ such that $\|f_n f_m\|_{\Psi} < \delta_k = 2^{-k}$ for $\min(m, n) \ge n(k)$.

Show that there exists an f in $\mathcal{L}^{\Psi}(\mu)$ for which $||f_n - f||_{\Psi} \to 0$, by following these steps.

- (i) Let $\{g_i\}$ be a nonnegative sequence in \mathcal{L}^{Ψ} for which $\sum_{i \in \mathbb{N}} \|g_i\|_{\Psi} < C < \infty$. Define $G_n = \sum_{i \leq n} g_i$ and $G = \sum_{i \in \mathbb{N}} g_i$. Show that $\mu \Psi(G_n/C) \leq 1$ for every n. Justify a passage to the limit to deduce that $\mu \Psi(G/C) \leq 1$ and $G(x) < \infty$ a.e. $[\mu]$.
- (ii) Define $h_k = f_{n(k)}$ and $H_L := \sum_{k=L}^{\infty} |h_k h_{k+1}|$. Use the results from part (i) to show that $\mu \Psi(H_L/\delta_{L-1}) \leq 1$.

(iii) Show that $\{h_k(x)\}$ is a Cauchy sequence of real numbers for each x at which $H_1(x)$ is finite. Deduce that

$$f(x) = \lim_{k \to \infty} h_k(x) \{ H_1(x) < \infty \}$$

is a well defined real-valued function for which

$$H_L(x) \ge |h_L(x) - h_i(x)| \to |h_L(x) - h(x)|$$
 as $i \to \infty$.

(iv) Show that $||h_L - h||_{\Psi} \leq 2\delta_L$ and $h \in \mathcal{L}^{\Psi}$. Then explain why $||f_n - h||_{\Psi} \to 0$ as $n \to \infty$.