Statistics 330b/600b, Math 330b spring 2015 Homework # 8 Due: Thursday 26 March

*[1] Suppose T is a function from a set \mathfrak{X} into a set \mathfrak{Y} , which is equipped with a σ -field \mathfrak{B} . Recall that $\sigma(T) := \{T^{-1}B : B \in \mathfrak{B}\}$ is the smallest sigma-field on \mathfrak{X} for which T is $\sigma(T) \setminus \mathfrak{B}$ -measurable.

Show that to each f in $\mathcal{M}^+(\mathfrak{X}, \sigma(T))$ there exists a g in $\mathcal{M}^+(\mathfrak{Y}, \mathcal{B})$ such that $f = g \circ T$ (that is, f(x) = g(T(x)), for all x in \mathfrak{X}) by following these steps.

- (i) If f is the indicator function of $T^{-1}(B)$ and g is the indicator function of B, show that $f = g \circ T$.
- (ii) Extend to the case where $f \in \mathcal{M}^+_{simple}(\mathfrak{X}, \sigma(T))$.
- (iii) Suppose $f_n = g_n \circ T$ is a sequence in $\mathcal{M}^+_{\text{simple}}(\mathfrak{X}, \sigma(T))$ that increases pointwise to f. Define $g(y) = \limsup g_n(y)$ for each $y \text{ in } \mathcal{Y}$. Show that g has the desired property.
- (iv) In part (iii), why can't you assume that $\lim g_n(y)$ exists for each y in \mathcal{Y} ?
- *[2] Suppose X and Y are independent real-valued random variables with

$$\mathbb{P}\{X=t\}\mathbb{P}\{Y=t\}=0 \quad \text{for each } t \in \mathbb{R}.$$

Show that $\mathbb{P}{X = Y} = 0$. Hint: Tonelli.

- *[3] I class I considered a problem with P equal to Lebesgue measure on $\mathcal{B}(0,1)^2$ and Tthe map from $(0,1)^2 \to (0,1)$ with $T(x_1,x_2) = \max(x_1,x_2)$. I claimed that T has distribution Q with density $2t\{0 < t < 1\}$ with respect to Lebesgue measure and asserted that P has a disintegration $\{P_t : 0 < t < 1\}$, where P_t is the uniform distribution on the set $\{T = t\}$. Establish the validity of this assertion by checking that $P(0,a] \times (0,b] = Q^t P_t^x(0,a] \times (0,b]$ for all $a, b \in (0,1)$. You will then need some sort of generating class argument to complete the proof. [Please do not just copy the argument from UGMTP.]
- [4] Define $g(x) = \sum_{i \le n} |x_i|^p$ where $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ and p > 0. Show that the set $\{x \in \mathbb{R}^n : g(x) \le 1\}$ has volume (Lebesgue measure)

$$V = \frac{\left(2\Gamma(1+1/p)^n\right)}{\Gamma(1+n/p)}$$

where $\Gamma(\alpha) = \int_0^\infty t^{\alpha-1} e^{-t} dt$ for $\alpha > 0$. Argue as follows. (For an extra challenge, replace g by $\sum_{i \le n} |x_i|^{p_i}$ for constants $p_i > 0$ then find the formula for the volume.) Define

$$J = \int_{\mathbb{R}^n} e^{-g(x)} \, dx.$$

- (i) Factorize J into a product of n integrals over \mathbb{R} then evaluate using the Calculus that you know.
- (ii) Show that $J = \int_{\mathbb{R}^n} \int_0^\infty e^{-t} \{t \ge g(x)\} dt dx$ then use Tonelli.
- (iii) Then what?