- *[1] Suppose A is a subset of a metric space with interior \mathring{A} . Show that the indicator function of \mathring{A} equals \mathring{f} , the largest lower semi-continuous function for which $A \ge \mathring{f}$.
- *[2] Suppose (\mathfrak{X}, d) is a metric space with a countable, dense subset $\{x_i : i \in \mathbb{N}\}$. Write $\mathcal{P}(\mathfrak{X})$ for the set of all probability measures on $\mathcal{B}(\mathfrak{X})$. For $P, Q \in \mathcal{P}(\mathfrak{X})$ define

$$D(P,Q) = \sup\{|Pf - Qf| : ||f||_{BL} \le 1\}.$$

- (i) Show that D is a metric on $\mathcal{P}(\mathfrak{X})$.
- (ii) For a given $\epsilon > 0$ define $h_0(x) \equiv \epsilon$ and $h_i(x) = (1 d(x, x_i)/\epsilon)^+$ for $i \ge 1$. Define $H_k(x) = \sum_{i=0}^k h_i(x)$. Show that $\{H_k(x) \le 1/2\} \downarrow \emptyset$ as $k \uparrow \infty$. Hint: What do you know about $H_k(x)$ if $k \ge i$ and $d(x, x_i) < \epsilon/2$?
- (iii) Define $\ell_{i,k} = h_i/H_k$ for $0 \le i \le k$. Show that each $\ell_{i,k}$ belongs to $BL(\mathfrak{X})$ and $\sum_{i=0}^k \ell_{i,k}(x) = 1$ for every x. Hint: First show that $1/H_k \in BL(\mathfrak{X})$.
- (iv) For each f with $||f||_{BL} \leq 1$ show that

$$|f(x) - \sum_{i=1}^{k} f(x_i)\ell_{i,k}(x)| \le \epsilon + f(x)\ell_{0,k}(x) \le 3\epsilon + \{H_k(x) \le 1/2\}.$$

- (v) Suppose P and $\{P_n : n \in \mathbb{N}\}$ are probability measures on $\mathcal{B}(\mathfrak{X})$ for which $P_n f \to Pf$ for each f in $\mathrm{BL}(\mathfrak{X})$. Show that $D(P_n, P) \to 0$. You may assume that $\limsup_n P_n F \leq PF$ for each closed set F. (The proof is almost the same as a result proved in class.)
- [3] Suppose W_n has a Poisson(n) distribution. Show that $Z_n := \sqrt{W_n} \sqrt{n} \rightsquigarrow N(0, 1/4)$ by following these steps. (Alternatively, you could also use UGMTP Example 7.31.) If you want more of a challenge, replace n by a real number λ that goes off to infinity.
 - (i) Show that $X_n := (W_n n)/\sqrt{n} \rightsquigarrow N(0, 1)$. (You may assume without proof that the sum of two independent Poissons is also Poisson.)
 - (ii) Show that $Y_n := \sqrt{W_n/n} \to 1$ in probability. That is, $\mathbb{P}\{|Y_n 1| > \epsilon\} \to 0$ for each fixed $\epsilon > 0$.
 - (iii) Show that $Z_n = T(X_n, Y_n)$ for some $T : \mathbb{R}^2 \to \mathbb{R}$ that is continous at the right places. Deduce that $Z_n \rightsquigarrow N(0, 1/4)$.