Statistics 330b/600b, Math 330b spring 2016

Homework # 3

Due: Thursday 11 February

Please attempt at least the starred problems. Please explain your reasoning.

*[1] Suppose \mathcal{A} is a sigma-field on a set \mathcal{X} and μ is a measure on \mathcal{A} . Write \mathcal{N}_{μ} for $\{N \in \mathcal{A} : \mu N = 0\}$. Define

$$\mathcal{A}_{\mu} := \{ B \subseteq \mathfrak{X} : \exists A \in \mathcal{A}, N \in \mathfrak{N}_{\mu} \text{ such that } |B - A| \leq N \}.$$

- (i) Show that A_{μ} is a sigma-field. Hint: If $\{B_i : i \in \mathbb{N}\} \subseteq A_{\mu}$ and $|B_i A_i| \leq N_i$, show that $|\bigcup_i B_i \bigcup_i A_i| \leq \bigcup_i N_i$.
- (ii) If $|B A_i| \leq N_i$ for i = 1, 2, with $A_i \in \mathcal{A}$ and $N_i \in \mathcal{N}_{\mu}$, show that $\mu A_1 = \mu A_2$. Hint: Show $A_1 \leq A_2 + N_1 + N_2$.
- (iii) If $|B A| \leq N$ with $A \in \mathcal{A}$ and $N \in \mathcal{N}_{\mu}$ define $\nu B = \mu A$. Show that ν is a measure on \mathcal{A}_{μ} whose restriction to \mathcal{A} equals μ .
- *[2] For f in $\mathcal{L}^1 := \mathcal{L}^1(\mathcal{X}, \mathcal{A}, \mu)$ define $||f||_1 = \mu |f|$. Let $\{f_n\}$ be a Cauchy sequence in \mathcal{L}^1 , that is, $||f_n f_m||_1 \to 0$ as $\min(m, n) \to \infty$. Show that there exists an f in \mathcal{L}^1 for which $||f_n f||_1 \to 0$, by following these steps. Note: Don't confuse Cauchy sequences (in \mathcal{L}^1 distance) of functions with Cauchy sequences of real numbers.
 - (i) For each $k \in \mathbb{N}$ there exists an $n(k) \in \mathbb{N}$ for which: $||f_n f_m||_1 < 2^{-k}$ when $\min(m,n) \ge n(k)$. Without loss of generality assume that n(k) is strictly increasing with k. Define $H(x) := \sum_{k=1}^{\infty} |f_{n(k)}(x) f_{n(k+1)}(x)|$. Show that $\mu H < \infty$.
 - (ii) Define $g_k = f_{n(k)}$. Show that $\{g_k(x) : k \in \mathbb{N}\}$ is a Cauchy sequence of real numbers for each x in the set $\{H < \infty\}$. Explain why

$$f(x) = \liminf_{k \to \infty} g_k(x) \{ H(x) < \infty \}$$

is a real-valued, A-measurable function for which

$$H(x) \ge |g_k(x) - f(x)| \to 0$$
 a.e. $[\mu]$.

- (iii) Deduce that $||g_k f||_1 \to 0$ as $k \to \infty$.
- (iv) Show that f belongs to $\mathcal{L}^1(\mu)$ and $||f_n f||_1 \to 0$ as $n \to \infty$.
- [3] Suppose $\{X_n : n \in \mathbb{N}\}$ is a sequence of real-valued random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. (That is, each X_n is an $\mathcal{A} \setminus \mathcal{B}(\mathbb{R})$ -measurable function.) Suppose also that the sequence is Cauchy in probability, that is, for each $\epsilon > 0$ there exists an n_{ϵ} for which $\mathbb{P}\{|X_n X_m| > \epsilon\} < \epsilon$ for all $m, n \geq n_{\epsilon}$.
 - (i) Write n(k) for the n_{ϵ} corresponding to $\epsilon = 2^{-k}$, for $k \in \mathbb{N}$. [You may assume that $n(1) < n(2) < \ldots$ Why?] Show that

$$\sum\nolimits_{k \in \mathbb{N}} \mathbb{P}\{|X_{n(k)} - X_{n(k+1)}| > 2^{-k}\} < \infty.$$

(ii) Deduce that there exists a \mathbb{P} -negligible set N for which $\{X_{n(k)}(\omega): k \in \mathbb{N}\}$ is a Cauchy sequence of real numbers for each ω in N^c . Deduce that $X_{n(k)}$ converges almost surely to the real-valued random variable $X(\omega) := \limsup_k \{\omega \in N^c\} X_{n(k)}(\omega)$.

- (iii) Use Dominated Convergence to show that $\mathbb{P}\{|X_{n(k)} X| > \epsilon\} \to 0$ as $k \to \infty$, for each fixed $\epsilon > 0$.
- (iv) Deduce that $\mathbb{P}\{|X_n X| > \epsilon\} \to 0$ as $n \to \infty$, for each fixed $\epsilon > 0$.
- [4] Let A_1, A_2, \ldots be events in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Define $X_n = A_1 + \cdots + A_n$ and $\sigma_n = \mathbb{P}X_n$.
 - (i) Show that $||X_n/\sigma_n||_2 \ge 1$. Hint: Jensen.
 - (ii) Show that (as a pointwise inequality between random variables)

$${X_n = 0} \le \frac{(k - X_n)(k + 1 - X_n)}{k(k+1)}$$

for each positive integer k. Hint: Are there any values of X_n for which the ratio on the right-hand side is negative?

Now suppose $\sigma_n \to \infty$ and $||X_n/\sigma_n||_2 \to 1$.

- (iii) By making an appropriate choice of the integer k (depending on n) in (ii), show that $\mathbb{P}\{X_n=0\}\to 0$ as $n\to\infty$. Deduce that $\sum_{i=1}^{\infty}A_i\geq 1$ almost surely.
- (iv) Prove that $\sum_{i=m}^{\infty} A_i \geq 1$ almost surely, for each fixed m. Hint: Show that the two convergence assumptions also hold for the sequence A_m, A_{m+1}, \ldots
- (v) Deduce that $\mathbb{P}\{\omega \in A_i \text{ i. o. }\}=1.$
- (vi) Suppose $\{B_i\}$ is a sequence of events for which $\sum_i \mathbb{P}B_i = \infty$ and $\mathbb{P}(B_iB_j) = (\mathbb{P}B_i)(\mathbb{P}B_j)$ for all $i \neq j$. Show that $\mathbb{P}\{\omega \in B_i \text{ i. o. }\} = 1$. Please use (v). I am not interested in seeing the standard textbook proof for the harder direction of Borel-Cantelli.