Statistics 330b/600b, Math 330b spring 2016 Homework # 4 Due: Thursday 18 February

Please attempt at least the starred problems. Please explain your reasoning.

- *[1] Suppose $(\mathfrak{X}, \mathcal{A}, \mu)$ is a measure space and $f \in \mathcal{L}^1(\mathfrak{X}, \mathcal{A}, \mu)$. Show that, for each $\epsilon > 0$ there exists a $\delta > 0$ for which $|\mu(FA)| < \epsilon$ for every set A in \mathcal{A} for which $\mu A < \delta$. Hint: Show that there is a constant M for which $\mu|f|\{|F| > M\} < \epsilon/2$. Then bound $|\mu(fA)|$ by the sum of contribution from $\{|f| \leq M\}$ and its complement.
- *[2] Let P and Q be finite measures defined on the same sigma-field \mathcal{F} , with densities p and q with respect to a measure μ . Suppose \mathcal{X}_0 is a measurable set with the property that there exists a nonnegative constant K such that $q \ge Kp$ on \mathcal{X}_0 and $q \le Kp$ on \mathcal{X}_0^c . For each \mathcal{F} -measurable function with $0 \le f \le 1$ and $Pf \le P\mathcal{X}_0$, prove that $Qf \le Q\mathcal{X}_0$. Hint: Prove that $(q-Kp)(2\mathcal{X}_0-1) = |q-Kp| \ge (q-Kp)(2f-1)$, then integrate. To statisticians this result is known as the Neyman-Pearson Lemma. The function f defines a randomized test between P and Q: reject P with probability f(x)if x is observed.
- [3] Suppose \mathcal{A} is a sigma-field on a set \mathfrak{X} and P and Q are probability measures on \mathcal{A} . Suppose also that P has density p and Q has density q with respect to some measure μ .
 - (i) For each $A \in \mathcal{A}$ show that $\sqrt{(PA)(QA)} \ge \mu (\sqrt{pq}A)$.
 - (ii) For each partition $\mathfrak{X} = A_1 + \cdots + A_k$ of \mathfrak{X} into \mathcal{A} -measurable sets, show that

$$\mu \left(\sqrt{p} - \sqrt{q}\right)^2 \ge \sum_i \left(\sqrt{PA_i} - \sqrt{QA_i}\right)^2.$$

(iii) Show that the supremum of $\sum_{i} (\sqrt{PA_{i}} - \sqrt{QA_{i}})^{2}$ over all finite partitions of \mathfrak{X} is equal to $\mu (\sqrt{p} - \sqrt{q})^{2}$. Hint: Explain why, without loss of generality, $\mu = P + Q$. Then consider sets $A_{0} = \{p = 0\}$ and $A_{i} = \{a_{i-1} where <math>0 = a_{0} < a_{1} < \cdots < a_{k}$ and $\max_{i}(a_{i} - a_{i-1}) < \epsilon$.