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The first two sections are based on the book by Breiman (1968, Chapter 6).
(See also Steele, 2015.) The third section is based on an elegant short paper
by Steele (1989).

The Breiman book is available in electronic form via the Yale Library at

http://hdl.handle.net/10079/bibid/12786310 .

1 Strong laws of large numbers

Many weeks ago I stated, but did not prove, the following result.

<1> Theorem. Let X1, X2, . . . be a sequence of independent, identically dis-
tributed random variables defined on some (Ω,F,P)). Then

n−1
∑

i≤n
Xi(ω)→ PX1 a.e.[P].

This Theorem is actually a special case of a result for stationary se-
quences.

<2> Theorem. Let X1, X2, . . . be a stationary sequence of random variables
defined on some (Ω,F,P)). If P|X1| <∞ then

n−1
∑

i≤n
Xi(ω)→ PGX1 a.e.[P],

where G is a (soon to be specified) sub-sigma-field of σ(X).
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And this Theorem can be derived from an even more general result
involving measure preserving transformations.

<3> Definition. Suppose (ω,F,P) is a probability space and T : Ω→ Ω is F\F-
measurable. The map T is said to be measure preserving if the image of P
under T is P itself. That is, Pf(ω) = Pf(Tω) at least for all f in M+(Ω,F).

It is easy to manufacture stationary process from a measure preserving
transformation (m.p.t.) T . Let f be any measurable, real-valued function
on Ω define X1(ω) = f(ω) and X2(ω) = f(Tω),. . . , and Xn(ω) = f(Tn−1ω),
. . . . Then

Pg(Xn+1, . . . , Xn+k)

= Pg
(
f(Tnω), . . . , f(Tn+k−1(ω)

)
= Pg

(
f(T 0ω), . . . , f(T k−1(ω)

)
because Tn is also m.p.

= Pg(X1, . . . , Xk)

Note the convention that T 0 is the identity map.
Associated with each m.p.t. T is an invariant sigma-field:

I = {F ∈ F : T−1F = F}.

An easy argument using limits of simple functions shows that an F-measurable
real valued function f is I-measurable if and only f(ω) = f(Tω) for all ω ∈
Ω. Such a function is said to be invariant under T . The m.p.t. T is said
to be ergodic if I is trivial, that is, if PF is either zero or one for each F
in I. Equivalently, T is ergodic if and only if every invariant measurable
function is constant.

<4> Example. Suppose T is a m.p.t. on (Ω,F,P) and f : Ω → R is F\B(R)-
measurable. Define Sn(ω) =

∑
0≤i<n f(T iω) and h(ω) = lim supn Sn(ω)/n.

Then h is invariant under T :

h(Tω) = lim sup
n

Sn(Tω)/n = lim sup
n

n+ 1

n

Sn+1(ω)− f(ω)

n+ 1
,

which equals h(ω) because (n+ 1)/n→ 1 and f(ω)/(n+ 1)→ 0 as n→∞.

�

<5> Theorem. (Ergodic theorem) Let T be a m.p.t on (Ω,F,P) and let f be
a function in L1(Ω,F,P). Define Sn(ω) =

∑
0≤i<n f(T iω) and Z = PIf .

Then Sn/n→ Z almost surely and P|Sn/n− Z| → 0.
If the transformation T is ergodic then Z can be taken as the constant Pf .
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The next Section contains the main ideas in the proof of the almost sure
convergence part of the Ergodic theorem. Problem [2] shows that the L1-
convergence is a simple Corollary.

2 Heuristics and proof for the Ergodic theorem

We can assume that Z is an invariant function. We need to show that
Sn(ω)/n → Z(ω) a.e.[P]. Equivalently, if f1(ω) = f(ω) − Z(ω), we need to
show that

n−1
∑

0≤i<n
f1(T

i−1ω)→ 0 a.e.[P].

To save on notation it is cleaner to assert that, without loss of generality,
Z = 0. That is, PIf = 0 so that P(Df) = 0 for each D in I.

For a fixed ε > 0, the following argument shows that the set

D = {ω : lim supSn(ω)/n > ε}

has zero probability. If we cast out a sequence of negligible sets (for a
sequence of ε’s tending to zero) we then get lim supSn/n ≤ 0 a.e.[P]. A
similar argument with f replaced by −f then gives lim sup(−Sn)/n ≤ 0
a.e.[P], that is, lim inf Sn/n ≥ 0 a.e.[P], and we are done.

The argument to show that PD = 0 is very elegant. The idea is to prove
that

<6> P(fD) ≥ εPD,

then note that P(fD) = 0 because D ∈ I.
Inequality <6> comes from an analogous inequality with D replaced by

the set

Dn = {ω ∈ D,Hn(ω) > 0} where Hn(ω) = max
1≤i≤n

(Si(ω)− iε) .<7>

Note that Hn(ω) increases with n and the sets {Hn(ω) > 0} increase to the
set

A = {ω : supi Si(ω)/i > ε} ⊃ {ω : lim supi Si(ω)/i > ε} = D.

Thus

Dn = D{Hn > 0} ↑ DA = D as n→∞.

Draft: 2 April 2017 c©David Pollard 3



Stat 330/600

The inequality P(fDn) ≥ εPDn will be a consequence of an integrated
version of a pointwise inequality

<8> f(ω) +H+
n (Tω) = ε+Hn+1(ω) ≥ ε+Hn(ω) for all ω.

Let me first show the integration steps and then explain where <8> comes
from.

Multiply both sides of inequality <8> by the indicator function of Dn:

fDn+H+
n (Tω){ω ∈ D}{Hn(ω) > 0} ≥ εDn+Hn(ω){ω ∈ D}{Hn(ω) > 0}.

On the right-hand side the indicator {Hn > 0} converts the Hn to an H+
n ;

the left-hand side gets bigger if we just discard the {Hn > 0}; and the
invariance of D lets us replace {ω ∈ D} by {Tω ∈ D} on the left-hand side.
Those modifications leave us with

<9> fDn +H+
n (Tω){Tω ∈ D} ≥ εDn +H+

n (ω){ω ∈ D}.

Notice that we have a function g(ω) := H+
n (ω){ω ∈ D} on the right-hand

side paired with g(Tω) on the left-hand side. The measure preserving prop-
erty of T ensures that Pg(Tω) = Pg(ω). If we take expected values of
both sides of inequality <9> the g contributions cancel, leaving the de-
sired inequality P(fDn) ≥ εPDn. Dominated Convergence as n → ∞ then
gives <6>.

Finally , for the pointwise inequality <8> note that

f(ω) + Si(Tω) = f(ω) + f(Tω) + · · ·+ f(T iω) = Si+1(ω)

so that

f(ω) +H+
n (Tω)

= max (f(ω) + 0, f(ω) + S1(Tω)− ε, . . . , f(ω) + Sn(Tω)− nε)
= max (S1(ω), S2(ω)− ε, . . . , Sn+1(ω)− nε)
= ε+Hn+1(ω).

Very neat.
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3 Stationary processes (Theorem <2>)

Remember that a sequence of random variables {Xi : i ∈ N} is stationary
if for each k ∈ N the random vector (X1, . . . , Xk) has the same distribution
as the random vector (Xn+1, . . . , Xn+k) for each n ∈ N. Equivalently, for
every k and every g in M+(Rk,B(R)k),

Pg(Xn+1, . . . , Xn+k) = Pg(X1, . . . , Xk) for every n.

In particular, P|Xi| is the same for all i.
As you know from HW2.3, the sequence defines a map

X(ω) = (X1(ω), X2(ω), . . . )

from Ω into RN. The map is F\B-measurable for B = B(R)N, the product
sigma-field on RN. The distribution of X is a probability measure P on B.
If the sequence is stationary then P is preserved by the shift map

T (x1, x2, . . . ) = (x2, x3, . . . ).

That is, Pf(Tx) = Pf(x) at least for each f in M+(RN,B).
If P|X1| < ∞ then the function f(x) = x1 belongs to L1(RN,B, P ).

Define S(x) = f(x) + · · · + f(Tn−1x) =
∑

i≤n xi. Theorem <5>, for the

probability space (RN,B, P ), implies that

S(x)/n→ Z(x) = PIf both almost surely and in L1(P ).

Put another way, the almost sure convergence means that the set

E = {x ∈ RN : S(x)/n→ Z(x)}

has P -measure 1.
Now let me can pull the result back to Ω. First note that

Sn(ω) =
∑

i≤n
Xi(ω) = Sn(Xω).

Define

G = {X−1J : J ∈ I},

a sub-sigma-field of F. By a result proved in class near the start of the
semester,

M+(Ω,G) = {h ◦X : h ∈M+(RN, I)}.
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This representation shows that Z(Xω) is a version of PGX1: for each h ∈
M+(RN, I)

Ph(Xω)X1(ω) = Ph(x)f(x) = Ph(x)Z(x) = PPh(Xω)Z(Xω).

Also P{ω : Xω ∈ E} = PE = 1 and, for ω ∈ X−1E,

Sn(ω)/n→ Z(Xω),

which is the assertion made by Theorem <2>.

Remark. You might wonder whether it is really necessary to pass
to the image measure before invoking the Ergodic theorem. Is it
possible to define a measure preserving transformation on (Ω,F,P)
then invke the Ergodic theorem for that transformation? See Doob
(1953, Section X.1) for discussion of this question.

4 The strong law of large numbers (Theorem <1>)

A sequence of iid random variables is clearly stationary. If we can show that
the invariance sigma-field I on RN, as defined in Section 3, is trivial then the
sigma-field G on Ω will also be trivial. It will then follow that PGX1 = PX1,
as needed for the SLLN.

Triviality of I is equivalent to the assertion that every function f in Mbdd(RN, I)
is constant.

Consider such an f . Without loss of generality suppose 0 ≤ f(x) ≤ 1 for
all x ∈ RN. Invariance tells us that

f(x) = f(xk+1, xk+2, . . . ) for every k.

HW7.3 tells us that for each ε > 0 there exists a k and a gk ∈M(Rk,B(R)k)
for which

P |f(x)− gk(x1, . . . , xk)| < ε.

This approximation might appear counterintuitive because the previous dis-
play tells us that f is independent of gk. In fact that is the reason that f
must be degenerate at its expected value c = Pf .

Without loss of generality we may assume that 0 ≤ gk ≤ 1, so that

ε > P |f − gk| ≥ P |f − gk|2 = P |f − c− (gk − c)|2
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However we also have

P |f − c− (gk − c)|2 = P |f − c|2 − 2P (f − c)(gk − c) + P |gk − c|2.

Independence kills the cross-product term, leaving a sum of two nonnegative
terms. We can conclude that P |f − c|2 < ε for every ε > 0.

Remark. The same method can be used to prove the Kolmogorov
zero-one law, UGMTP Example 4.12.

5 Problems

[1] Suppose g is an F-measurable real-valued function on Ω.

(i) Show that h(ω) := lim supn−1
∑

0≤i<n g(T iω)/n is I-measurable.

(ii) Deduce that D := {ω : lim supSn(ω)/n > ε} is I-measurable, for each ε > 0.

(iii) Suppose g = g ◦ T almost surely. That is, P{ω : g(ω) = g(Tω)} = 1. Show
that g = h almost surely.

[2] Show that the convergence in Theorem <5> also holds in the L1 sense.
Hint: Split f0 into a sum of f1 = f0{|f0| ≤ C} and f2 = f0{|f0| > C},
with corresponding decompositions Sn = Sn,1 + Sn,2 and PIf0 = h1 + h2
where hi = PIfi. Choose the constant C large enough that P|f2| < ε. Show
that P|Sn,2| < ε and P|h2| < ε. There is no need for Egoroff’s theorem.

[3] Suppose {gn : n ∈ N} and {hn : n ∈ N} are subadditive non-negative
processes. Define fn = gnhn. Show that {fn : n ∈ N} is subadditive.

[4] Suppose f is an FB(R)-measurable function on Ω = RN for which f(ω) ≤
f(Tω) for all ω, as in the proof of Theorem <10>.

(i) For each real α show that Bα := {ω : f(ω) > α} is a subset of {ω : f(Tω) >
α} = T−1Bα.

(ii) Deduce from the fact that T preserves measures that Bα = T−1Bα almost
surely.

(iii) Cast out a sequence of negligible sets to deduce that f(ω) = f(Tω) almost
surely.

(iv) Deduce via Problem [1](iii) that there exists an invariant function h that
equals f almost surely.
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l’Institut Henri Poincaré—Probabilités et Statistiques 25 (1), 93–98.

Steele, J. M. (2004). The Cauchy-Schwarz Master Class: An Introduction
to the Art of Mathematical Inequalities. Cambridge University Press.

Steele, J. M. (2015). Explaining a mysterious maximal inequality —
and a path to the law of large numbers. The American Mathematical
Monthly 122 (5), 490–494.

Draft: 2 April 2017 c©David Pollard 8



Stat 330/600

Ignore this Section

6 The subadditive ergodic theorem

Kingman (1968) proved a useful extension of the ergodic theorem, which he
later (Kingman, 1973, 1976) discussed in more leisurely fashion. J. Michael
Steel simplified the proof in a gem of a paper Steele (1989), which you should
all read to see how a probability grand master explains technical ideas. If
you are impressed by this paper, you should also look at the book Steele
(2004). It would be a much greater pleasure to read the literature if everyone
wrote as well as JMC.

<10> Theorem. Suppose T is a measure-preserving transformation on a proba-
bility space (Ω,F,P). Suppose {gn : n ∈ N} ⊂ L1(Ω,F,P) is a sequence of
integrable functions with the subadditivity property

gi+j(ω) ≤ gi(ω) + gj(T
iω) for all i, j ∈ N and all ω.

Then there exists an invariant, integrable function h, possibly taking the
value −∞, for which gn(ω)/n→ h(ω) almost surely.

<11> Example. If f is integrable, the process

gn(ω) = f(ω) + f(Tω) + · · ·+ f(Tn−1ω)

is additive (a special case of subadditivity) because

gk+`(ω) = gk(ω) +
∑

k≤i<k+`
f(T iω) = gk(ω) + g`(T

kω).

�

The previous Example suggests (correctly) that the Ergodic Theorem is
a special case of Theorem <5>. It is amusing that the more general theorem
can be proved using the weaker theorem.
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Proof (of Theorem <10>) First a simple inequality:

gn(ω) ≤ gn−1(ω) + g1(T
n−1ω)

≤ gn−2(ω) + g1(T
n−2ω) + g1(T

n−1ω)

. . .

≤ g1(ω) + g2(ω) + · · ·+ gn(Tn−1ω).

The process defined by

fn(ω) = gn(ω)− n−
∑n−1

i=0
g1(T

iω)

is also subadditive and fn(ω)/n ≤ −1. Moreover, for each n,

fn+1(ω) ≤ fn(ω) + f1(Tω) < fn(ω) because f1 ≤ −1.

Thus

<12> 0 > f1(ω) > f2(ω) > · · · > fn(ω) > . . .

If we can show that fn(ω)/n converges almost surely to an invariant
function then the result for gn/n follows via the Ergodic Theorem <5>
with f0 = g1.

Define f(ω) = lim inf fn(ω)/n. If we take the lim inf of both sides of the
pointwise inequality

fn+1(ω)/n ≤ (f1(ω) + fn(Tω)) /n

we get f(ω) ≤ f(Tω) for each ω. By Problem [4], there exists an invariant
function h for which function f = h almost surely. Of course we may
assume h(ω) ≤ −1 everywhere.

Consider any invariant function γ for which

h(ω) < γ(ω) < 0 for all ω.

(For example, γ(ω) = ε+ max(−M,h(ω)).) The next part of the proof will
show that lim sup fn(ω)/n ≤ γ(ω) almost surely on sets with probability
arbitrarily close to 1. By taking a sequence of γi’s that decrease pointwise
to h and sets with probabilities converging rapidly enough to 1, we can then
conclude that fn(ω)/n→ h(ω) almost surely.

Next comes a surprising use of the Ergodic Theorem. By construction,
fn(ω)/n < γ(ω) infinitely often, for each ω. The sets

AN := {ω : min
i≤N

fi(ω)/i < γ(ω)} ↑ Ω for each ω.
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By the conditional expectation version of Monotone Converge, PIAN ↑ 1
almost surely as N goes to infinity.

For an arbitrarily small δ > 0 define BN := {ω : PIAN > 1− δ}. With δ
fixed, choose N large enough to make PBN > 1− δ.

For almost all ω ∈ BN , and all n large enough,

n−1
∑

0≤i<n
{T iω ∈ AN} > 1− δ.

Consider any such ω and a suitably large n (with n > N .) Call an
integer k in the range 1 ≤ k ≤ n−N ‘good’ if T kω ∈ AN . By definition, for
good k there must be an integer ` (depending on ω, k, n, δ, γ) with 1 ≤ ` ≤ N
for which

<13> f`(T
kω)/` < γ(T kω) = γ(ω),

the final equality by the invariance of γ. Draw an arrow pointing from the
integer k to the integer m = k + `. Note that m ≤ n because k ≤ n − N
and ` ≤ N .

Call all the other integers in [n] := {i ∈ N : 1 ≤ i ≤ n} ‘bad’. Make the
arrow from a bad i point to its successor, i+ 1.

In the following picture, the arrows for the good integers are on top and
the short arrows for the bad integers are on the bottom.

1 2 k1 2 3 4 5 6 7 8 9 10 11 12 13 14k1 m1 k2 m2

The picture is slightly misleading. If n is large enough there should be
at least (n−N)(1− δ) good integers, which means there are at most

n− (n−N)(1− δ) ≤ N + nδ

bad integers.
Think of the elements of [n] as a one-dimensional version of a Snakes

and Ladders board, without the snakes. Play a non-random version of the
game by starting at 1 and following the arrows. For example, for the picture
the sequence would be

1, 2 = k1, 9 = m1 = k1 + `1, 10, 11, 12 = k2, 14 = m2 = k2 + `2, . . .

Suppose we visit good sites k1, k2, . . . , kr before reaching n. By construc-
tion, ki < mi = ki + `i ≤ ki+1 for each i.
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By the decreasing property <12> and the bound <13> for each good
integer,

fn(ω) ≤ fmr(ω)

≤ fkr(ω) + γ(ω)`r

≤ fmr−1(ω) + γ(ω)`r

≤ fkr−1(ω) + γ(ω)`r−1 + γ(ω)`r

≤ . . .
≤ fk1(ω) + γ(ω)`1 + · · ·+ γ(ω)`r

≤ γ(ω)
∑r

i=1
`i.

The path from 1 to n passes through r good integers and s bad integers,
which implies

(s× 1) + `1 + · · ·+ `r = n− 1,

so that

`1 + · · ·+ `r ≥ n− 1− n+ (n−N)(1− δ) ≥ n(1− δ)− 1−N(1− δ).

The fact that γ(ω) < 0 then gives us

fn(ω)/n ≤ γ(ω)(1− δ − o(1)) as n→∞.

Thus lim sup fn(ω)/n ≤ γ(ω)(1 − δ) for almost all ω in BN , for arbitrarily
small δ > 0 and γ > h. That is not quite what I promised but it is good
enough for you to prove that lim sup fn(ω)/n ≤ h(ω) almost surely.

�

7 An application

What would be a good example? Maybe translate the example used by
Steele (1989) into a USLLN.
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