Generating classes of functions

- <1> **Definition.** Let \mathcal{H} be a set of bounded, real-valued functions on a set \mathfrak{X} . Call \mathcal{H} a λ -space if:
 - (i) \mathcal{H} is a vector space
 - (ii) each constant function belongs to \mathcal{H} ;
 - (iii) if $\{h_n\}$ is an increasing sequence of functions in \mathfrak{H} whose pointwise limit h is bounded then $h \in \mathfrak{H}$.

Define $\sigma(\mathcal{H})$ to be the smallest sigma-field on \mathfrak{X} for which each h in \mathcal{H} is $\sigma(\mathcal{H}) \setminus \mathcal{B}(\mathbb{R})$ -measurable. Define $\mathcal{E} = \{ \{x : h(x) > c\} : h \in \mathcal{H} \text{ and } c \in \mathbb{R} \}$ and $\mathcal{A} = \mathcal{A}_{\mathcal{H}} := \{A \subseteq \mathfrak{X} : \mathbb{1}_A \in \mathcal{H} \}.$

- * Show that $\sigma(\mathcal{H}) = \sigma(\mathcal{E})$ and that \mathcal{A} is a λ -class of sets.
- \star Show that \mathcal{H} is stable under uniform limits.

For the following assertions assume that \mathcal{H} is π -stable, that is, if $h_1, h_2 \in \mathcal{H}$ then the function $x \mapsto h_1(x)h_2(x)$ is also in \mathcal{H} .

- * Show that \mathcal{A} is π -stable and hence \mathcal{A} is a sigma-field.
- * Show that if $h \in \mathcal{H}$ then $h^+ \in \mathcal{H}$. Use the Weierstrass theorem to write h^+ as a uniform limit of functions $p_n(h)$, with p_n a polynomial.
- ★ Show that \mathcal{H} is stable under pairwise maxima and pairwise minima. Use $h_1 \lor h_2 = h_1 + (h_2 - h_1)^+$.
- * Show that $\mathcal{E} \subseteq \mathcal{A}$. Use $\{h > c\} = \lim_n (1 \wedge n(h-c)^+)$.
- * Deduce that $\sigma(\mathcal{H}) = \sigma(\mathcal{E}) = \mathcal{A}$.
- ★ Deduce that \mathcal{H} consists of the set of all bounded, $\mathcal{A} \setminus \mathcal{B}(\mathbb{R})$ measurable real functions on \mathcal{X} .

Now suppose that \mathcal{H} is a λ -space and \mathcal{G} is a π -stable subset of \mathcal{H} . Let \mathcal{H}_0 denote the smallest λ -space for which $\mathcal{H}_0 \supseteq \mathcal{G}$.

^{*} Imitate the proof of the $\pi - \lambda$ -theorem for sets to show that \mathcal{H}_0 is π -stable.

^{*} Deduce that every bounded, $\sigma(\mathfrak{G})\mathcal{B}(\mathbb{R})$ -measurable function belongs to \mathcal{H} .