
Chapter 4

Product spaces and independence

SECTION 1 introduces independence as a property that justifies some sort of factorization
of probabilities or expectations. A key factorization Theorem is stated, with proof
deferred to the next Section, as motivation for the measure theoretic approach. The
Theorem is illustrated by a derivation of a simple form of the strong law of large
numbers, under an assumption of bounded fourth moments.

SECTION 2 formally defines independence as a property of sigma-fields. The key Theorem
from Section 1 is used as motivation for the introduction of a few standard techniques
for dealing with independence. Product sigma-fields are defined.

SECTION 3 describes a method for constructing measures on product spaces, starting from
a family of kernels.

SECTION 4 specializes the results from Section 3 to define product measures. The Tonelli
and Fubini theorems are deduced. Several important applications are presented.

SECTION *5 discusses some difficulties encountered in extending the results of Sections 3
and 4 when the measures are not sigma-finite.

SECTION 6 introduces a blocking technique to refine the proof of the strong law of large
numbers from Section 1, to get a version that requires only a second moment condition.

SECTION *7 introduces a truncation technique to further refine the proof of the strong
law of large numbers, to get a version that requires only a first moment condition for
identically distributed summands.

SECTION *8 discusses the construction of probability measures on products of countably
many spaces.

1. Independence

Much classical probability theory, such as the laws of large numbers and central
limit theorems, rests on assumptions of independence, which justify factorizations
for probabilities of intersections of events or expectations for products of random
variables.

An elementary treatment usually starts from the definition of independence for
events. Two events A and B are said to be independent if P (AB) = (PA)(PB); three
events A, B, and C , are said to be independent if not only P (ABC) = (PA)(PB)(PC)

but also P (AB) = (PA)(PB) and P (AC) = (PA)(PC) and P (BC) = (PB)(PC).
And so on. There are similar definitions for independence of random variables,
in terms of joint distribution functions or joint densities. The definitions have two
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things in common: they all assert some type of factorization; and they do not
lend themselves to elementary derivation of desirable facts about independence.
The measure theoretic approach, by contrast, simplifies the study of independence
by eliminating unnecessary duplications of definitions, replacing them by a single
concept of independence for sigma-fields, from which useful consequences are
easily deduced. For example, the following key assertion is impossible to derive by
elementary means, but requires only routine effort (see Section 2) to establish by
measure theoretic arguments.

<1> Theorem. Let Z1, . . . , Zn be independent random variables on a probabil-
ity space (�, F, P). If f ∈ M+(Rk, B(Rk)) and g ∈ M+(Rn−k, B(Rn−k)) then
f (Z1, . . . , Zk) and g(Zk+1, . . . , Zn) are independent random variables, and

P f (Z1, . . . , Zk)g(Zk+1, . . . , Zn) = P f (Z1, . . . , Zk)Pg(Zk+1, . . . , Zn).

<2> Corollary. The same conclusion (independendence and factorization) holds for
Borel measurable functions f and g taking both positive and negative values if both
f (Z1, . . . , Zk) and g(Zk+1, . . . , Zn) are integrable.

As you will see at the end of Section 2, the Corollary follows easily from addi-
tion and subtraction of analogous results for the functions f ± and g±. Problem [10]
shows that the result also extends to cases where some of the integrals are infinite,
provided ∞ − ∞ problems are ruled out.

The best way for you to understand the worth of Theorem <1> and its Corollary
is to see it used. At the risk of interrupting the flow of ideas, I will digress slightly
to present an instructive application.

The proof of the strong law of large numbers (often referrred to by means
of the acronym SLLN) illustrates well the use of Corollary <2>. Actually, several
slightly different results answer to the name SLLN. A law of large numbers asserts
convergence of averages to expectations, in some sense. The word “strong” specifies
almost sure convergence. The various SLLN’s differ in the assumptions made about
the individual summands. The most common form invoked in statistical applications
goes as follows.

<3> Theorem. (Kolmogorov) Let X1, X2, . . . be independent, integrable random
variables, each with the same distribution and common expectation µ. Then the
average (X1 + . . . + Xn)/n converges almost surely to µ.

Remark. If P|X1| = ∞ then (X1 +. . .+ Xn)/n cannot converge almost surely to
a finite limit (Problem [21]). Moreover Kolmogorov’s zero-one law (Example <12>)
implies that it cannot even converge to a finite limit at each point of a set with
strictly positive probability. If only one of PX±

1 is infinite, the average still converges
almost surely to PX1 (Problem [20]).

A complete proof of this form of the SLLN is quite a challenge. The classical
proof (a modified version of which appears in Sections 6 and 7) combines a number
of tricks that are more easily understood if introduced as separate ideas and not
just rolled into one monolithic argument. The basic idea is not too hard to grasp
when we have bounded fourth moments; it involves little more than an application
of Corollary <2> and an appeal to the Borel-Cantelli lemma from Section 2.6.
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For theoretical purposes, for summands that need not all have the same
distribution, it is cleaner to work with the centered variables Xi − PXi , which is
equivalent to an assumption that all variables have zero expected values.

<4> Theorem. Let X1, X2, . . . be independent random variables with PXi = 0 for
every i and supi PX4

i < ∞. Then (X1 + . . . + Xn)/n → 0 almost surely.

Proof. Define Sn = X1 + . . . + Xn . It is good enough to show, for each ε > 0, that

<5>

∞∑
n=1

P

{ |Sn|
n

> ε

}
< ∞.

Do you remember why? If not, you should refer to Section 2.6 for a detailed
explanation of the Borel-Cantelli argument: the series

∑
n{ |Sn|/n > ε} must

converge almost surely, which implies that lim sup |Sn/n| ≤ ε almost surely, from
which the conclusion lim sup |Sn/n| = 0 follows after a casting out of a sequence of
negligible sets.

Bound the nth term of the sum in <5> by (nε)−4
P(X1 + . . . + Xn)

4. Expand
the fourth power.

(X1 + . . . + Xn)
4 = X4

1 + . . . + X4
n

1

+ (lots of terms like X3
1 X2) 2

+
(

n

2

)
terms like 6X2

1 X2
2

3

+ (lots of terms like X2
1 X2 X3) 4

+ (lots of terms like X1 X2 X3 X4) 5

The contributions to P(X1 + . . . + Xn)
4 from the five groups of terms are:

1
∑

i≤n PX4
i ≤ nM , where M = supi PX4

i ;
2 zero, because P(X3

1 X2) = (PX3
1) (PX2) = 0 ;

3 less than 12
(n

2

)
M , because P(X2

1 X2
2) ≤ PX4

1 + PX4
2 ≤ 2M;

4 zero, because P(X2
1 X2 X3) = (PX2

1 X2) (PX3) = 0 ;
5 zero, because P(X1 X2 X3 X4) = (PX1 X2 X3) (PX4) = 0 .

Notice all the factorizations due to independence. Combining these bounds and
equalities we get P{|Sn|/n > ε} = O

(
n−2

)
, from which <5> follows.�

If you feel that Theorem <4> is good enough for ‘practical purposes,’ and that
all the extra work to whittle a fourth moment assumption down to a first moment
assumption is hardly worth the gain in generality, you might like to contemplate the
following example. How natural, or restrictive, would it be if we were to assume
finite fourth moments?

<6> Example. Let {Pθ : θ = 0, 1, . . . , N } be a finite family of distinct probability mea-
sures, defined by densities {pθ } with respect to a measure µ. Suppose observations
X1, X2, . . . are generated independently from P0. The maximum likelihood estimator
θ̂n(ω) is defined as the value that maximizes Ln(θ, ω) := ∏

i≤n pθ (Xi (ω)). The SLLN
will show that P{̂θn = 0 eventually} = 1. That is, the maximum likelihood estimator
eventually picks the true value of θ .
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It will be enough to show, for each θ = 0, that with probability one,
log (Ln(θ)/Ln(0)) < 0 eventually. For fixed θ = 0 define �i = log (pθ (Xi )/p0(Xi )).
By Jensen’s inequality, with a strict inequality because Pθ = P0,

P�i = Px
0 log

(
pθ (x)

p0(x)

)
< log µx

(
p0(x)

pθ (x)

p0(x)

)
= log µx pθ (x){p0(x) = 0} ≤ 0.

By the SLLN (or its extension from Problem [20] if P�i = −∞), for almost all ω

there exists a finite n0(ω, θ) for which 0 > n−1 ∑
i≤n �i := n−1 log (Ln(θ)/Ln(0))

when n ≥ n0(ω, θ). When n ≥ maxN
θ=1 n0(ω, θ), we have maxN

θ=1 Ln(θ) < Ln(0), in
which case the maximizing θ̂n prefers 0 to each θ ≥ 1.�

Remark. Notice that the argument would not work if the index set were infinite.
To handle such sets, one typically imposes compactness assumptions to reduce to the
finite case, by means of a much-imitated method originally due to Wald (1949).

2. Independence of sigma-fields

Technically speaking, the best treatment of independence starts with the concept
of independent sub-sigma-fields of F, for a fixed probability space (�, F, P). This
Section will develop the appropriate definitions and techniques for dealing with
independence of sigma-fields, using the ideas needed for the proof of Theorem <2>

as motivation.

<7> Definition. Let (�, F, P) be a probability space. Sub-sigma-fields G1, . . . ,Gn

of F are said to be independent if

P(G1 . . . Gn) = (PG1) . . . (PGn) for all Gi ∈ Gi , for i = 1, . . . n.

An infinite collection of sub-sigma-fields {Gi : i ∈ I } is said to be independent if
each finite subcollection is independent, that is, if P (∩i∈SGi ) = ∏

i∈S PGi for all
finite subsets S of I , and all choices Gi ∈ Gi for each i in S.

The definition neatly captures all the factorizations involved in the elementary
definitions of independence for more than two events.

<8> Example. Let A, B, and C be events. They generate sigma-fields A =
{∅, A, Ac, �}, and B = {∅, B, Bc, �}, and C = {∅, C, Cc, �}. Independence of
the three sigma-fields requires factorization for 43 = 64 triples of events, amongst
which are the four factorizations stated at the start of Section 1 as the elemen-
tary definition of independence for the three events A, B, and C . In fact, all
64 factorizations are consequences of those four. For example, any factorization
where one of the factors is the empty set will reduce to the identity 0 = 0. The
factorization P(ABcC) = (PA)(PBc)(PC) follows from P(AC) = (PA)(PC) and
P(ABC) = (PA)(PB)(PC), by subtraction. And so on.�

Generating class arguments, such as the π–λ Theorem from Section 2.10, make
it easy to derive facts about independent sigma-fields. For example, Problem [8]
uses such arguments in a routine way to establish the following result.
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<9> Theorem. Let E1, . . . ,En be classes of measurable sets, each class stable under
finite intersections and containing the whole space �. If

P (E1 E2 . . . En) = (PE1) (PE2) . . . (PEn) for all Ei ∈ Ei , for i = 1, 2, . . . , n,

then the sigma-fields σ(E1), σ (E2), . . . , σ (En) are independent.

Remark. The requirement that � ∈ Ei for each i is just a sneaky way of
getting factorizations for intersections of fewer than n sets.

<10> Corollary. Let {Ei : i ∈ I } be classes of measurable sets, each stable under finite
intersections. If P (∩i∈S Ei ) = ∏

i∈S PEi for all finite subsets S of I , and all choices
Ei ∈ Ei for each i in S, then the sigma-fields σ(Ei ), for i ∈ I , are independent.

Proof. Notice the alternative to requiring � ∈ Ei for every i . Theorem <9>

establishes independence for each finite subcollection.�
<11> Corollary. Let {Gi : i ∈ I } be independent sigma-fields. If {Ij : j ∈ J } are disjoint

subsets of I , then the sigma-fields σ
(∪i∈Ij Gi

)
, for j ∈ J , are independent.

Proof. Invoke Corollary <10> with Ej consisting of the collection of all finite
intersections of sets chosen from ∪i∈Ij Gi .�

<12> Example. Let {Gi : i ∈ N} be a sequence of independent sigma-fields. For each n
let Hn denote the sigma-field generated by ∪i>nGi . The tail sigma-field is defined
as H∞ := ∩nHn . Kolmogorov’s zero-one law asserts that, for each H in H∞, either
PH = 0 or PH = 1. Equivalently, the sigma-field H∞ is independent of itself, so
that P(H H) = (PH)(PH) for every H in H∞.

For each finite n, Corollary <11> implies independence of Hn, G1, . . . ,Gn . From
the fact that H∞ ⊆ Hn for every n, it then follows that each finite subcollection
of {H∞, Gi : i ∈ N} is independent, and hence the whole collection of sigma-
fields is independent. From Corollary <11> again, H∞ and F∞ := σ (∪i∈NGi ) are
independent. To complete the argument, note that F∞ ⊇ H∞.�

Random variables (or random vectors, or random elements of more general
spaces) inherit their definition of independence from the sigma-fields they generate.
Recall that if X is a map from � into a set X, equipped with a sigma-field A, then
the sigma-field σ(X) on � generated by X is defined as the smallest sigma-field G for
which X is G\A-measurable. It consists of all sets of the form {ω ∈ � : X (ω) ∈ A},
with A ∈ A.

Remark. The extra generality gained by allowing maps into arbitrary measurable
spaces will not be wasted; but in the first instance you could safely imagine each
space to be the real line, ignoring the fact that the definition also covers independence
of random vectors and independence of stochastic processes.

<13> Definition. Measurable maps Xi , for i ∈ I , from � into measurable spaces
(Xi , Ai ) are said to be independent if the sigma-fields that they generate are
independent, that is, if

<14> P

(⋂
i∈S

{Xi ∈ Ai }
)

=
∏
i∈S

P{Xi ∈ Ai },

for all finite subsets S of the index set I , and all choices of Ai ∈ Ai for i ∈ S.



82 Chapter 4: Product spaces and independence

Results about independent random variables are usually easy to deduce from
the corresponding results about independent sigma-fields.

<15> Example. Real random variables X1 and X2 for which

P{X1 ≤ x1, X2 ≤ x2} = P{X1 ≤ x1}P{X2 ≤ x2} for all x1, x2 in R

are independent, because the collections of sets Ei = { {Xi ≤ x} : x ∈ R} are both
stable under finite intersections, and σ(Xi ) = σ(Ei ).�

We now have the tools needed to establish Theorem <2>. Write X1

for f (Z1, . . . , Zk) and X2 for g(Zk+1, . . . , Zn). Write Gi for σ(Zi ), the sigma-
field generated by the random variable Zi . From Corollary <11>, the sigma-fields
F1 := σ (G1 ∪ . . . ∪ Gk) and F2 := σ (Gk+1 ∪ . . . ∪ Gn) are independent. If we can
show that X1 is F1\B(R)-measurable and X2 is F2\B(R)-measurable, then their
independence will follow: we will have the desired factorization for all sets of the
form {X1 ∈ A1} and {X2 ∈ A2}, for Borel sets A1 and A2.

Consider first the measurability property for X1. Temporarily write Z for
(Z1, . . . , Zk), a map from � into R

k . We need to show that the set

{X1 ∈ A} = {Z ∈ f −1(A)}
belongs to F1 for every A in B(R). The B(Rk)\B(R)-measurability of f ensures
that f −1(A) ∈ B(Rk). We therefore need only show that {Z ∈ B} ∈ F1 for every B
in B(Rk), that is, that the map Z is F1\B(Rk)-measurable.

As with many measure theoretic problems, it is better to turn the question
around and ask: For how extensive a class of sets B does {Z ∈ B} belong to F1?
It is very easy to show that the class B0 of all such B is a sigma-field; so Z is an
F1\B0-measurable function. Moreover, for all choices of Di ∈ B(R), the set

D := {(z1, . . . , zk) ∈ R
k : zi ∈ Di for i = 1, . . . , k}

belongs to B0 because {Z ∈ D} = ∩i {Zi ∈ Di } ∈ F1. As shown in Problem [6],
the collection of all such D sets generates the Borel sigma-field B(Rk). Thus
B(Rk) ⊆ B0, and {Z ∈ B} ∈ F1 for all B ∈ B(Rk). It follows that X1 is F1\B(R)-
measurable. Similarly, X2 is F2\B(R)-measurable. The random variables X1 and
X2 are independent, as asserted by Theorem <2>.

The whole argument can be carried over to random elements of more general
spaces if we work with the right sigma-fields.

<16> Definition. Let X1, . . . ,Xn be sets equipped with sigma-fields A1, . . . , An . The
set of all ordered n-tuples (x1, . . . , xn), with xi ∈ Xi for each i is denoted by
X1 × . . . × Xn or Xi≤n Xi . It is called the product of the {Xi }. A set of the form

A1 × . . . × An = {(x1, . . . , xn) ∈ X1 × . . . × Xn : xi ∈ Ai for each i },
with Ai ∈ Ai for each i , is called a measurable rectangle. The product sigma-field
A1 ⊗ . . . ⊗ An on X1 × . . . × Xn is defined to be the sigma-field generated by all
measurable rectangles.

Remark. Even if n equals 2 and X1 = X2 = R, there is is no presumption
that either A1 or A2 is an interval—a measurable rectangle might be composed of
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many disjoint pieces. The symbol ⊗ in place of × is intended as a reminder that
A1 ⊗ A2 consists of more than the set of all measurable rectangles A1 × A2.

If Zi is an F\Ai -measurable map from � into Xi , for i = 1, . . . , n, then
the map ω �→ Z(ω) = (Z1(ω), . . . , Zn(ω)) from � into X = X1 × . . . × Xn is
F\A-measurable, where A denotes the product sigma-field A1 ⊗ . . . ⊗ An . If f is
an A\B(R)-measurable real-valued function on X then f (Z) is F\B(R)-measurable.

The second assertion of Theorem <1> is now reduced to a factorization
property for products of independent random variables, a result easily deduced from
the defining factorization for independence of sigma-fields by means of the usual
approximation arguments.

<17> Lemma. Let X and Y be independent random variables. If either X ≥ 0 and
Y ≥ 0, or both X and Y are integrable, then P(XY ) = (PX)(PY ). The product XY
is integrable if both X and Y are integrable.

Proof. Consider first the case of nonnegative variables. Express X and Y as
monotone increasing limits of simple random variables (as in Section 2.2), Xn :=
2−n

∑
1≤i≤4n {X ≥ i/2n} and Yn := 2−n

∑
1≤i≤4n {Y ≥ i/2n}. Then, for each n,

P(XnYn) = 4−n ∑
i, j P ({X ≥ i/2n}{Y ≥ j/2n})

= 4−n ∑
i, j (P{X ≥ i/2n}) (P{Y ≥ j/2n}) by independence

= (
2−n ∑

i P{X ≥ i/2n}) (
2−n ∑

j P{Y ≥ j/2n}
)

= (PXn)(PYn).

Invoke Monotone Convergence twice in the passage to the limit to deduce P(XY ) =
(PX)(PY ).

For the case of integrable random variables, factorize expectations for products
of positive and negative parts, P(X±Y ±) = (PX±)(PY ±). Each of the four products
represented by the right-hand side is finite. Complete the argument by splitting each
term on the right-hand side of the decomposition

P(XY ) = P(X+Y +) − P(X+Y −) − P(X−Y +) + P(X−Y −)

into a product of expectations, then refactorize as (PX+ − PX−)(PY + − PY −).
Integrability of XY follows from a similar decomposition for P|XY |.�

3. Construction of measures on a product space

The probabilistic concepts of independence and conditioning are both closely related
to the measure theoretic constructions for measures on product spaces. As you
will see in Chapter 5, conditioning may be thought of as a inverse operation to a
general construction whereby a measure on a product space is built from families
of measures on the component spaces. For probability measures the components
have the interpretation of distributions involved in a two-stage experiment. Product
measures, and independence, correspond to the special case where the second stage
of the experiment does not depend on the first stage. Many traditional facts about




