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Projections in £?

For a measure space (X,.A,u), the set £2 = L£2(X, A, u) of all square inte-
grable, A\B(R)-measurable real functions on X would be a Hilbert space
if we worked with equivalence classes of functions that differ only on u-
negligible sets. The corresponding set L?(X, A, 1) can be identified as a true
Hilbert space.

Lazy probabilists (like me) often ignore the distinction between L? and £2,

referring to || ||, = (u(f?)) Y2 45 a norm on £2 (rather than using the more
precise term ‘semi-norm’) and

(f,9) =nu(fg)  for f,ge L2(X, A, p)

as an inner product. It is true that (f, g) is linear in f for fixed g and linear
in g for fixed f, and it is true that || f||* = (f, f), but we can only deduce
that f(z) = 0 a.e.[u] if || f||, = 0. As shown by HW3.2, the space £? is also
complete: for each Cauchy sequence {h, : n € N} in £? there exists an h
in £2 (unique up to p-equivalence) for which |k, — k||, — 0.
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To avoid some tedious qualifications I will slightly abuse terminology by
referring to a subset H of £? as closed if: for each f in £2 with ||h,, — fll, —
0 for a sequence {h,} in H there exists an h in H for which h(z) = f(x)
a.e.[p]. (Some authors would insist that f itself should belong to .)

The following result underlies the existence of both Radon-Nikodym
derivatives (densities) for measures and Kolmogorov conditional expecta-
tions.

Theorem. Suppose H is a closed subspace of L2(X, A, ). For each f € L*
there exists an fo in H for which:

(i) 1 — folly = 8 := inf{|f — hlly : b € 5
(ii) (f — fo,h) =0 for every h in H;
(#ii) property (iii) uniquely determines fo up to p-equivalence;
(iv) |15 = lfoll5 + IIf = foll3-
PRrROOF The argument uses completeness of £2 and the identity
la+ b3+ la — b3 = 2[lall3 + b} for all a,b € £2,

an equality that results from expanding (a + b,a + b) + (a — b,a — b) then
cancelling out (a, b) terms.

By definition of the infimum, for each n € N there exists an h,, € H for
which

If = Pnlly < 0ni=0+n""
Invoke equality <2> with a = f — h, and b= f — h:
A0F = (oo + o) 2134 o = o3 = 211 = B3+ 21 = 3
The first term on the left-hand side is > 462 because (hy, +hy,)/2 € H. Thus
By — B3 < 262 4202, — 462 =0 as min(m,n) — oco.

That is {h,} is a Cauchy sequence, which converges in norm to an fo in £2.
Without loss of generality (H is closed) we may assume that fy € H.
Equality (i) follows from

6 < |If = folly N = hnlly + lhn = folly =0 asn— o0
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For (ii) note, for each h € H, that the quadratic

I1f = (fo+ th)|I> = If — foll* + 2t(f — fo, h) + > |||l3

achieves its minimum value 62 at ¢t = 0, which forces the coefficient of ¢ to
equal zero.

For (iii) suppose fo, fi € H and both f — fy and f — fi are orthogonal
to each h in H. Then the difference fo — fi must be orthogonal to itself,
that is || fo — leg =0, forcing fo = f1 a.e.[u].

Equality (iv) follows from the fact that (f — fo, fo) = 0.

The function fp, which is unique only up to p-equivalence, is called
an (orthogonal) projection of f onto H. Formally the projection function
73c maps an f from £2(u) to a p-equivalence classes of functions in J.
If we arbitrarily choose one member from each equivalence class then g
can also be thought of as a map from £2(yu) into 3, at the cost of some
caveats involving negligible sets. For example, if g1, g2 € £? and 7yg; = h;
for i = 1,2 then, for constants ¢; and co, part (iii) of the Theorem gives

(191 + €2092) = c1myg1 + camyga  a.e.[ul,

which is as close to linearity as we can hope to get for a map that is only
defined up to a p-equivalence.

Radon-Nikodym theorem

The simplest form of the theorem concerns two finite measures p and v
defined on some (X, A).

Theorem. If uX < oo and pf > vf for each f in M (X, A) then there
exists an A-measurable function A with 0 < A(z) <1 for all x such that

vf=pu(fA) for each f in M™T(X,A).
The function A is unique up to p-equivalence.

PROOF (sketch of a proof due to von Neumann, 1940, page 127)

Without loss of generality suppose vX = 1.

Define 3 = {f € £L2(X,A,p) : vf = 0}. Note that I is a closed subspace
of £2: if vh, = 0 and plh, — f|> = 0 then

wfl = |v(hn — )] S Vb — | < VY| — fI2 < Vplhn — f2 =0,
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implying vf = 0.
Let fo = w1l and ¢ = 1 — fy. Note that vg = vl —vfy = 1. In

consequence p{z : g(z) # 0} > v{z : g(x) # 0} > 0 and ||g||5 := u(g?) > 0.
Suppose f € £2 has vf = c¢. Then v(f — cg) = 0, that is, f — cg € 3, so
that 0 = (f — cg,9) = u(fg — cg®) = 0. The final equality rearranges to

vf=p(fA)  where A:=g/||g3.

Invoke the last equality with f = {A < 0} to get
0 <v{A <0} <pu(A{A<0}) <0,

with the last inequality strict unless u{A < 0} = 0. Similarly
p{A>1} 2 {A>1} = p(A{A>1}) 2 p{{A > 1},

with the last inequality strict unless u{A > 1} = 0.
Replace A by A{0 < A <1}.
For f € Mt (X, A) take limits (MC) in v(f An) = pA(f An) as n — oo.
For uniqueness a.e.[u]: If u(fA1) = u(fAs) for all f € M* consider first
f={A1 <A} then f={A; > Ay} to deduce that A} = Ay a.e.[u].

Theorem <4> has an extension to sigma-finite measures with v domi-
nated by p, that is: for each A € A, if pA =0 then vA = 0.
Remark. Domination is sometimes expressed as “v is absolutely
continuous with respect to u”, which is often denoted by v < u. This

terminology borrows from the classical concept of absolute continuity
of a function defined on the real line (Pollard, 2001, Section 3.4).

Theorem. If i and v are both sigma-finite measures with v dominated by
then there exists a real-valued function A € M* (X, A) for which

vf=u(fA) for each f in MT (X, A).
The function A is unique up to p-equivalence.

For an idea of the proof see Pollard (2001, Section 3.2).
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Conditioning

Recall the conditioning problem. We have a probability measure Q on the
product sigma-field A ® B on X x Y, with X-marginal P. That is,

Pg=Q"Yg(x) for each g € M™T (X, A).

Here and subsequently I identify g with a function on X x Y whose value
does not depend on the Y-coordinate.

We seek a Markov kernel K = {K, : x € X}—a family of probability
measures on B for which z — K,B is A-measurable for each B € B—for
which

Qf(z,y) = P'KY f(x,y) for each f € MT(X x Y, A @ B).

We can also think of K as a map from M*(X x Y,.A® B) into M (X, A) by
taking Kf to be the function whose value at x equals K, f = K% f(z,y). We
require this map to have the following Markov kernel properties:

(i) Kz0 =0 and K,1 = 1;

)
(i) Ky(erf1 + cafz) = aiKy f1 + oK, fo for constants ¢; € RT;
(iil) Kofy < Kufa if fi(z,y) < fo(x,y) for all (z,y);
(iv) if fa(z,y) T f(2,y) then KZ fo(z,y) — Kif(z,y).
)

(v) if g € MF(X,A) and f € MT(X x Y, A ® B) then KY (g(x)f(z,y)) =
9(@)Ka f.

Property (v) is more a statement of the fact that K, treats g(z) like a
constant than a requirement that needs to be checked.

As you will soon see, projections can be used to define a conditional
expectation map X : MH(X x Y, A ® B) — MT(X,A) with analogous
properties:

(i) X;0 =0 and K;1 =1 a.e.[P];

(i) Kyp(erfi + cafa) = aaXaf1 + oKy f2 a.e.[P] for constants ¢; € RT;

(i) Kpf1 < Kpfo ae[Plif fi(x,y) < fo(x,y) for all (z,y);
)

() if ful2,9) T £(2,) then KL fu(z,y) T KLF(z,y) ae.[P];
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(v) if g e MT(X, A) and f € MT(X x Y, A®B) then K% (gf) = g(2)K.f
a.e.[P].

If the a.e.[P] were not added to each line, X would correspond to a
Markov kernel. If we collect the (uncountably many) P-negligible sets into
a single P-negligible set N then a redefinition of X, for x € N could provide
a Markov kernel. Unfortunately reduction to a single P-negligible N is
not always possible and even when it is possible it takes a lot of work.
Alternatively we could just learn to live with all the a.e.[P] constraints and
accept something less than a Markov kernel for the purposes of conditioning.
That is the choice made in much of the probability and statistics literature,
with the X sometimes being referred to as a Kolmogorov conditional
expectation operator.

Projections as conditional expectation maps

Here is how projections get into the story. We can identify £2(P) :=
L2(X, A, P) with a subspace of £2(Q) := L£2(X x Y,A ® B,Q) because
Pg(z)? = Qg(x)2. In fact L2(P) is then a closed subspace of £2(Q). Indeed,
suppose {g,} is a sequence in £2(P) for which Q|g,(z) — f(x,y)|*> — 0 for
some f € £2(Q). By an argument similar to HW2.2 and HW3.2, there exists
a subsequence along which g,y (z) — f(z,y) a.e.[Q]. Deduce that f is Q-
equivalent to limsup,, ) gn(k) (z). Minor surgery on some P-negligible sets
excludes values where the limsup equals o0, leaving a function in £2(P).

If equality <6> holds, with K a Markov kernel, then g(z) = K%f(z,y)
is an A-measurable function for which, by Jensen’s inequality,

Pg® < P(KYf(x,y)*) < Qf < co.
Moreover, for each h € £L2(P),

Q(f(z,y) — g(x)) h(z) = P* (h(x)Kz(f(z,y) — 9(x)) = 0.

That is, f —g is orthogonal to 3 in the sense of the £2(Q) inner product, the
property that identifies g() as one of the £2(P) functions that represents
the orthogonal projection of f onto £2(P).

Now try to go in the other direction. Let X denote the map that
projects £2(Q) orthogonally onto £2(P), with X, f denoting some arbi-
trarily choice from the P-equivalence class of possible functions. Of course,
if f(z,y) = g(x) € L2(P) we can take K, f to equal g(x).

At the moment X is defined only on £2(Q). A limiting operation will
extend the definition to M (A ® B). Let me first record how far we have
gone towards defining a conditional expectation operator.
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Lemma. The map X from £2(Q) to L2(P) has the following properties.
(i) K0 =0 and K1 =1 a.e.[P];
(ii) Ki(erfi + cafo) = a1Kpf1 + 2Ky fo a.e.[P] for constants ¢; € R
(iii) Kz fr < Ko fo ae[P]if fi(z,y) < folz,y) for all (z,y);
(i) if falz,y) T fz,y) € £2(Q) then Kifp(w,y) T Kif(z,y) ae.[P)]
(v) Qg(z)f(x,y) = Pg(x)Kof for each g € L*(P) and f € £*(Q).

PROOF Assertion (i) holds even without the a.e.[P] because constant func-
tions belong to £2(P).

Assertion (ii) corresponds to equality <3>.

For (iii) it suffices to prove that g(z) := K, f > 0 a.e.[P] if f(z,y) > 0 for
all (x,y). Use the fact that f — g is orthogonal to 1{z : g(z) < 0} because
the indicator function belongs to £2(P). Thus

Qg{g <0} =Qf{g <0} >0.

The first integral would be strictly negative if Q{g < 0} were nonzero.
For (iv) note that f — fi > f — fu 1 0, so that Q(f — f,)* — 0, by
Dominated Convergence. Define g(z) = K, f and g, () = Kz fn. By (ii),

gn(x) T G(z) :=sup,engn(z) < g(z) a.e[P].

A similar Dominated Convergence argument with ¢ — g1 > G — g,, | 0 then
shows that P|g,(r) — G(x)|?> — 0. Property (iv) from Theorem <1> shows
that

Plgn(z) — g(2)]* < Q|f — fal* = 0.

It follows that G(x) = g(x) a.e.[P].
For (v) use the fact that f—%, f is orthogonal to every function in £2(P).

The extension to M (A®B) is now straightforward. To avoid notational
confusion I will temporarily write X for the extension.

Lemma. For f € MT(A ® B) define Kof = sup;en Ko (f Nd). If fr €
MT(A®B) and fo 1 f then Ko fn T Kof ace.[P).

Draft: 8 March 2017 ©David Pollard 7




Stat 330,600

PRrROOF By construction we have %zfn < J~wan+1 < .'J~<xf a.e.[P] for each n.
Lemma <7> (iv) gives K, (fn A1) T Kz (f N i) a.e.[P], for each i € N. An
interchange in the order of two suprema then gives

sup,, Ky frn = sup,, sup; K, (fn A i) = sup; K (f A i) = &xf a.e.[P],

which is equivalent to the asserted convergence.

I leave it to you (HW8) to figure out how to combine Lemmas <7>
and <8> to deduce that K has all the desired properties for a Kolmogorov
conditional expectation operator. It is also traditional to extend this oper-
ator to give a map from £1(X x Y, A ® B,Q) to L(X, A, P), in much the
same way that I extended integrals from M™T to £!.

Bringing it all back to (2

The probability measure Q on A ® B could be generated as the joint distri-
bution of a real-valued random variable Y on (Q,F,P) and some arbitrary
F\A-measurable map X into X.

Suppose Y € £2(Q,F,P) and g € £L2(X, A, P). Then f(x,y) = y belongs
to £2(Q) and F(z) := K.f € L2(P) and

Pg(X)Y = Q"Yg(x)y
= P"g(2)Kyy
= P'g(z)F(z)
— Pg(X)F(X).

If you can remember back to the third lecture of the course you should
agree that if § = o(X), the smallest sigma-field on Q for which X is §\A-
measurable, then every function in M+ (€, §) can be written in the form h(X)
for some h in M* (X, A). In consequence, every random variable in £2(2, G, P)
can be represented as h(X) for some h in £2(X, A, P). In particular, g(X)
and F(X (w)) = Kx(uy from the last display both belong to £2(€2, §, P) and
the display is asserting that Y — F/(X) is orthogonal to £2(2, G,P). That is,
F(X) is the orthogonal projection of Y onto £2(£2,G,P), which is actually
a closed subspace of £L2(Q2, T, P).

In an obvious variation on traditional notation I write Pg for the map
(defined only up an almost sure equivalence) for which F' = PgY. That
is, Pg projects £2(Q, F,P) onto £2(Q, G, P). It is called the (Kolmogorov)
conditional expectation of Y given the sub-sigma-field G.
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This operator can be extended to a map from M™(Q, F) into (equivalence
classes of) MT(Q, G) with the properties

(i) Pg0 =0 and Pgl =1 a.e.[P];
(ii) Pg(c1Y1 + c2Ya) = c1PgY7 + coPgYs a.e.[P] for constants ¢; € RY;

(iii) PgY; < PgYs a.e.[P] if Y1 (w) < Ya(w) for all w;

)

)

)
(iv) if Y, (w) 1 Y (w) then PgY,, T PgY a.e.[P];
(v) if G € M*(w,§) and Y € MF(w, F) then Pg (GY) = GPgY a.c.[P];
)

(vi) PY = P(PgY) a.e.[P] for each Y € MT(w, F).

Again it is traditional to extend the projection Pg to a map from £1(Q2, F,P)
to £1(Q, G, P), defined only up to an almost sure equivalence, and having
properties analogous to those of an integral.

You have probably noticed that X has disappeared from the notation,
with only the fact that § equals o(X) left as a reminder. In fact the whole
theory could be worked out for a completely general sub-sigma-field G of &,
with no mention of any X. For the special case when § = ¢(X) the operator
could also be written as Px.

Remark. If you want to be very cunning you could take X = Q

with A = G, and X as the identity map, X (w) = w.
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