Projections, Radon-Nikodym, and conditioning

1	Projections in \mathcal{L}^2
2	Radon-Nikodym theorem 3
3	Conditioning 5
	3.1 Projections as conditional expectation maps 6
4	Bringing it all back to Ω

1 Projections in \mathcal{L}^2

For a measure space $(\mathfrak{X}, \mathcal{A}, \mu)$, the set $\mathcal{L}^2 = \mathcal{L}^2(\mathfrak{X}, \mathcal{A}, \mu)$ of all square integrable, $\mathcal{A} \setminus \mathcal{B}(\mathbb{R})$ -measurable real functions on \mathfrak{X} would be a Hilbert space if we worked with equivalence classes of functions that differ only on μ -negligible sets. The corresponding set $L^2(\mathfrak{X}, \mathcal{A}, \mu)$ can be identified as a true Hilbert space.

Lazy probabilists (like me) often ignore the distinction between L^2 and \mathcal{L}^2 , referring to $\|f\|_2 = (\mu(f^2))^{1/2}$ as a norm on \mathcal{L}^2 (rather than using the more precise term 'semi-norm') and

 $\langle f,g \rangle = \mu(fg) \quad \text{for } f,g \in \mathcal{L}^2(\mathcal{X},\mathcal{A},\mu)$

as an inner product. It is true that $\langle f, g \rangle$ is linear in f for fixed g and linear in g for fixed f, and it is true that $||f||^2 = \langle f, f \rangle$, but we can only deduce that f(x) = 0 a.e. $[\mu]$ if $||f||_2 = 0$. As shown by HW3.2, the space \mathcal{L}^2 is also complete: for each Cauchy sequence $\{h_n : n \in \mathbb{N}\}$ in \mathcal{L}^2 there exists an hin \mathcal{L}^2 (unique up to μ -equivalence) for which $||h_n - h||_2 \to 0$. To avoid some tedious qualifications I will slightly abuse terminology by referring to a subset \mathcal{H} of \mathcal{L}^2 as **closed** if: for each f in \mathcal{L}^2 with $||h_n - f||_2 \rightarrow 0$ for a sequence $\{h_n\}$ in \mathcal{H} there exists an h in \mathcal{H} for which h(x) = f(x) a.e. $[\mu]$. (Some authors would insist that f itself should belong to \mathcal{H} .)

The following result underlies the existence of both Radon-Nikodym derivatives (densities) for measures and Kolmogorov conditional expectations.

- <1> **Theorem.** Suppose \mathfrak{H} is a closed subspace of $\mathcal{L}^2(\mathfrak{X}, \mathcal{A}, \mu)$. For each $f \in \mathcal{L}^2$ there exists an f_0 in \mathfrak{H} for which:
 - (i) $||f f_0||_2 = \delta := \inf\{||f h||_2 : h \in \mathcal{H}\};$
 - (ii) $\langle f f_0, h \rangle = 0$ for every h in \mathcal{H} ;
 - (iii) property (iii) uniquely determines f_0 up to μ -equivalence;
 - (*iv*) $||f||_2^2 = ||f_0||_2^2 + ||f f_0||_2^2$.

PROOF The argument uses completeness of \mathcal{L}^2 and the identity

$$<\!\!2\!\!>$$

$$||a+b||_2^2 + ||a-b||_2^2 = 2 ||a||_2^2 + ||b||_2^2$$
 for all $a, b \in \mathcal{L}^2$,

an equality that results from expanding $\langle a + b, a + b \rangle + \langle a - b, a - b \rangle$ then cancelling out $\langle a, b \rangle$ terms.

By definition of the infimum, for each $n \in \mathbb{N}$ there exists an $h_n \in \mathcal{H}$ for which

$$||f - h_n||_2 \le \delta_n := \delta + n^{-1}.$$

Invoke equality $\langle 2 \rangle$ with $a = f - h_n$ and $b = f - h_m$:

$$4 \|f - (h_n + h_m)/2\|_2^2 + \|h_n - h_m\|_2^2 = 2 \|f - h_n\|_2^2 + 2 \|f - h_m\|_2^2$$

The first term on the left-hand side is $\geq 4\delta^2$ because $(h_n + h_m)/2 \in \mathcal{H}$. Thus

$$||h_n - h_m||_2^2 \le 2\delta_n^2 + 2\delta_m^2 - 4\delta^2 \to 0$$
 as $\min(m, n) \to \infty$.

That is $\{h_n\}$ is a Cauchy sequence, which converges in norm to an f_0 in \mathcal{L}^2 . Without loss of generality (\mathcal{H} is closed) we may assume that $f_0 \in \mathcal{H}$.

Equality (i) follows from

$$\delta \le ||f - f_0||_2 \le ||f - h_n||_2 + ||h_n - f_0||_2 \to \delta$$
 as $n \to \infty$.

For (ii) note, for each $h \in \mathcal{H}$, that the quadratic

$$||f - (f_0 + th)||^2 = ||f - f_0||^2 + 2t\langle f - f_0, h\rangle + t^2 ||h||_2^2$$

achieves its minimum value δ^2 at t = 0, which forces the coefficient of t to equal zero.

For (iii) suppose $f_0, f_1 \in \mathcal{H}$ and both $f - f_0$ and $f - f_1$ are orthogonal to each h in \mathcal{H} . Then the difference $f_0 - f_1$ must be orthogonal to itself, that is $||f_0 - f_1||_2^2 = 0$, forcing $f_0 = f_1$ a.e. $[\mu]$. Equality (iv) follows from the fact that $\langle f - f_0, f_0 \rangle = 0$.

The function f_0 , which is unique only up to μ -equivalence, is called an (orthogonal) projection of f onto \mathcal{H} . Formally the projection function $\pi_{\mathcal{H}}$ maps an f from $\mathcal{L}^2(\mu)$ to a μ -equivalence classes of functions in \mathcal{H} . If we arbitrarily choose one member from each equivalence class then $\pi_{\mathcal{H}}$ can also be thought of as a map from $\mathcal{L}^2(\mu)$ into \mathcal{H} , at the cost of some caveats involving negligible sets. For example, if $g_1, g_2 \in \mathcal{L}^2$ and $\pi_{\mathcal{H}} g_i = h_i$ for i = 1, 2 then, for constants c_1 and c_2 , part (iii) of the Theorem gives

$$<3>$$
 $\pi_{\mathcal{H}}(c_1g_1 + c_2g_2) = c_1\pi_{\mathcal{H}}g_1 + c_2\pi_{\mathcal{H}}g_2$ a.e. $[\mu],$

which is as close to linearity as we can hope to get for a map that is only defined up to a μ -equivalence.

2 Radon-Nikodym theorem

The simplest form of the theorem concerns two finite measures μ and ν defined on some $(\mathfrak{X}, \mathcal{A})$.

Theorem. If $\mu \mathfrak{X} < \infty$ and $\mu f \geq \nu f$ for each f in $\mathfrak{M}^+(\mathfrak{X}, \mathcal{A})$ then there exists an A-measurable function Δ with $0 \leq \Delta(x) \leq 1$ for all x such that

 $\nu f = \mu(f\Delta)$ for each f in $\mathcal{M}^+(\mathfrak{X}, \mathcal{A})$.

The function Δ is unique up to μ -equivalence.

PROOF (sketch of a proof due to von Neumann, 1940, page 127) Without loss of generality suppose $\nu \mathfrak{X} = 1$.

Define $\mathcal{H} = \{f \in \mathcal{L}^2(\mathcal{X}, \mathcal{A}, \mu) : \nu f = 0\}$. Note that \mathcal{H} is a closed subspace of \mathcal{L}^2 : if $\nu h_n = 0$ and $\mu |h_n - f|^2 \to 0$ then

$$|\nu f| = |\nu(h_n - f)| \le \nu |h_n - f| \le \sqrt{\nu |h_n - f|^2} \le \sqrt{\mu |h_n - f|^2} \to 0,$$

Draft: 8 March 2017 © David Pollard 3

implying $\nu f = 0$.

Let $f_0 = \pi_{\mathcal{H}} 1$ and $g = 1 - f_0$. Note that $\nu g = \nu 1 - \nu f_0 = 1$. In consequence $\mu\{x : g(x) \neq 0\} \ge \nu\{x : g(x) \neq 0\} > 0$ and $\|g\|_2^2 := \mu(g^2) > 0$. Suppose $f \in \mathcal{L}^2$ has $\nu f = c$. Then $\nu(f - cg) = 0$, that is, $f - cg \in \mathcal{H}$, so that $0 = \langle f - cg, g \rangle = \mu(fg - cg^2) = 0$. The final equality rearranges to

 $u f = \mu(f\Delta) \quad \text{where } \Delta := g/ \|g\|_2^2.$

Invoke the last equality with $f = \{\Delta < 0\}$ to get

 $0 \le \nu \{\Delta < 0\} \le \mu \left(\Delta \{\Delta < 0\} \right) \le 0,$

with the last inequality strict unless $\mu{\Delta < 0} = 0$. Similarly

$$\mu\{\Delta>1\}\geq \nu\{\Delta>1\}=\mu\left(\Delta\{\Delta>1\}\right)\geq \mu\{\{\Delta>1\},$$

with the last inequality strict unless $\mu{\{\Delta > 1\}} = 0$.

Replace Δ by $\Delta \{ 0 \le \Delta \le 1 \}$.

For $f \in \mathcal{M}^+(\mathcal{X}, \mathcal{A})$ take limits (MC) in $\nu(f \wedge n) = \mu \Delta(f \wedge n)$ as $n \to \infty$. For uniqueness a.e. $[\mu]$: If $\mu(f\Delta_1) = \mu(f\Delta_2)$ for all $f \in \mathcal{M}^+$ consider first $f = \{\Delta_1 < \Delta_2\}$ then $f = \{\Delta_1 > \Delta_2\}$ to deduce that $\Delta_1 = \Delta_2$ a.e. $[\mu]$.

Theorem $\langle 4 \rangle$ has an extension to sigma-finite measures with ν dominated by μ , that is: for each $A \in \mathcal{A}$, if $\mu A = 0$ then $\nu A = 0$.

Remark. Domination is sometimes expressed as " ν is absolutely continuous with respect to μ ", which is often denoted by $\nu \ll \mu$. This terminology borrows from the classical concept of absolute continuity of a function defined on the real line (Pollard, 2001, Section 3.4).

<5> **Theorem.** If μ and ν are both sigma-finite measures with ν dominated by μ then there exists a real-valued function $\Delta \in \mathcal{M}^+(\mathfrak{X}, \mathcal{A})$ for which

 $\nu f = \mu(f\Delta)$ for each f in $\mathcal{M}^+(\mathcal{X}, \mathcal{A})$.

The function Δ is unique up to μ -equivalence.

For an idea of the proof see Pollard (2001, Section 3.2).

3 Conditioning

Recall the conditioning problem. We have a probability measure \mathbb{Q} on the product sigma-field $\mathcal{A} \otimes \mathcal{B}$ on $\mathfrak{X} \times \mathfrak{Y}$, with \mathfrak{X} -marginal P. That is,

$$Pg = \mathbb{Q}^{x,y}g(x)$$
 for each $g \in \mathcal{M}^+(\mathcal{X}, \mathcal{A})$.

Here and subsequently I identify g with a function on $\mathfrak{X} \times \mathfrak{Y}$ whose value does not depend on the \mathfrak{Y} -coordinate.

We seek a Markov kernel $\mathbb{K} = \{\mathbb{K}_x : x \in \mathcal{X}\}$ —a family of probability measures on \mathcal{B} for which $x \mapsto \mathbb{K}_x B$ is \mathcal{A} -measurable for each $B \in \mathcal{B}$ —for which

$$\mathbb{Q}f(x,y) = P^x \mathbb{K}^y_x f(x,y) \quad \text{for each } f \in \mathcal{M}^+(\mathcal{X} \times \mathcal{Y}, \mathcal{A} \otimes \mathcal{B}).$$

We can also think of \mathbb{K} as a map from $\mathcal{M}^+(\mathcal{X} \times \mathcal{Y}, \mathcal{A} \otimes \mathcal{B})$ into $\mathcal{M}^+(\mathcal{X}, \mathcal{A})$ by taking $\mathbb{K}f$ to be the function whose value at x equals $\mathbb{K}_x f = \mathbb{K}_x^y f(x, y)$. We require this map to have the following *Markov kernel properties*:

- (i) $\mathbb{K}_x 0 = 0$ and $\mathbb{K}_x 1 = 1$;
- (ii) $\mathbb{K}_x(c_1f_1+c_2f_2)=c_1\mathbb{K}_xf_1+c_2\mathbb{K}_xf_2$ for constants $c_i\in\mathbb{R}^+$;
- (iii) $\mathbb{K}_x f_1 \leq \mathbb{K}_x f_2$ if $f_1(x, y) \leq f_2(x, y)$ for all (x, y);
- (iv) if $f_n(x,y) \uparrow f(x,y)$ then $\mathbb{K}^y_x f_n(x,y) \to \mathbb{K}^y_x f(x,y)$.
- (v) if $g \in \mathcal{M}^+(\mathcal{X}, \mathcal{A})$ and $f \in \mathcal{M}^+(\mathcal{X} \times \mathcal{Y}, \mathcal{A} \otimes \mathcal{B})$ then $\mathbb{K}^y_x(g(x)f(x, y)) = g(x)\mathbb{K}_x f$.

Property (v) is more a statement of the fact that \mathbb{K}_x treats g(x) like a constant than a requirement that needs to be checked.

As you will soon see, projections can be used to define a *conditional expectation map* $\mathcal{K} : \mathcal{M}^+(\mathcal{X} \times \mathcal{Y}, \mathcal{A} \otimes \mathcal{B}) \to \mathcal{M}^+(\mathcal{X}, \mathcal{A})$ with analogous properties:

- (i) $\mathcal{K}_x 0 = 0$ and $\mathcal{K}_x 1 = 1$ a.e.[P];
- (ii) $\mathcal{K}_x(c_1f_1+c_2f_2)=c_1\mathcal{K}_xf_1+c_2\mathcal{K}_xf_2$ a.e.[P] for constants $c_i \in \mathbb{R}^+$;
- (iii) $\mathcal{K}_x f_1 \leq \mathcal{K}_x f_2$ a.e.[P] if $f_1(x, y) \leq f_2(x, y)$ for all (x, y);
- (iv) if $f_n(x,y) \uparrow f(x,y)$ then $\mathcal{K}^y_x f_n(x,y) \uparrow \mathcal{K}^y_x f(x,y)$ a.e. [P];

Draft: 8 March 2017 © David Pollard

<6>

(v) if $g \in \mathcal{M}^+(\mathcal{X}, \mathcal{A})$ and $f \in \mathcal{M}^+(\mathcal{X} \times \mathcal{Y}, \mathcal{A} \otimes \mathcal{B})$ then $\mathcal{K}^y_x(gf) = g(x)\mathcal{K}_x f$ a.e.[P].

If the a.e. [P] were not added to each line, \mathcal{K} would correspond to a Markov kernel. If we collect the (uncountably many) P-negligible sets into a single P-negligible set \mathcal{N} then a redefinition of \mathcal{K}_x for $x \in \mathcal{N}$ could provide a Markov kernel. Unfortunately reduction to a single P-negligible \mathcal{N} is not always possible and even when it is possible it takes a lot of work. Alternatively we could just learn to live with all the a.e. [P] constraints and accept something less than a Markov kernel for the purposes of conditioning. That is the choice made in much of the probability and statistics literature, with the \mathcal{K} sometimes being referred to as a **Kolmogorov conditional expectation** operator.

3.1 **Projections as conditional expectation maps**

Here is how projections get into the story. We can identify $\mathcal{L}^2(P) := \mathcal{L}^2(\mathfrak{X}, \mathcal{A}, P)$ with a subspace of $\mathcal{L}^2(\mathbb{Q}) := \mathcal{L}^2(\mathfrak{X} \times \mathcal{Y}, \mathcal{A} \otimes \mathfrak{B}, \mathbb{Q})$ because $Pg(x)^2 = \mathbb{Q}g(x)^2$. In fact $\mathcal{L}^2(P)$ is then a closed subspace of $\mathcal{L}^2(\mathbb{Q})$. Indeed, suppose $\{g_n\}$ is a sequence in $\mathcal{L}^2(P)$ for which $\mathbb{Q}|g_n(x) - f(x,y)|^2 \to 0$ for some $f \in \mathcal{L}^2(\mathbb{Q})$. By an argument similar to HW2.2 and HW3.2, there exists a subsequence along which $g_{n(k)}(x) \to f(x,y)$ a.e. $[\mathbb{Q}]$. Deduce that f is \mathbb{Q} -equivalent to $\limsup_{n(k)} g_{n(k)}(x)$. Minor surgery on some P-negligible sets excludes values where the limsup equals $\pm \infty$, leaving a function in $\mathcal{L}^2(P)$.

If equality $\langle 6 \rangle$ holds, with \mathbb{K} a Markov kernel, then $g(x) = \mathbb{K}_x^y f(x, y)$ is an \mathcal{A} -measurable function for which, by Jensen's inequality,

$$Pg^2 \le P(\mathbb{K}^y_x f(x,y)^2) \le \mathbb{Q}f^2 < \infty.$$

Moreover, for each $h \in \mathcal{L}^2(P)$,

$$\mathbb{Q}\left(f(x,y) - g(x)\right)h(x) = P^x\left(h(x)\mathbb{K}^y_x(f(x,y) - g(x))\right) = 0.$$

That is, f-g is orthogonal to \mathcal{H} in the sense of the $\mathcal{L}^2(\mathbb{Q})$ inner product, the property that identifies g(x) as one of the $\mathcal{L}^2(P)$ functions that represents the orthogonal projection of f onto $\mathcal{L}^2(P)$.

Now try to go in the other direction. Let \mathcal{K} denote the map that projects $\mathcal{L}^2(\mathbb{Q})$ orthogonally onto $\mathcal{L}^2(P)$, with $\mathcal{K}_x f$ denoting some arbitrarily choice from the *P*-equivalence class of possible functions. Of course, if $f(x,y) = g(x) \in \mathcal{L}^2(P)$ we can take $\mathcal{K}_x f$ to equal g(x).

At the moment \mathcal{K} is defined only on $\mathcal{L}^2(\mathbb{Q})$. A limiting operation will extend the definition to $\mathcal{M}^+(\mathcal{A} \otimes \mathcal{B})$. Let me first record how far we have gone towards defining a conditional expectation operator.

<7> Lemma. The map
$$\mathcal{K}$$
 from $\mathcal{L}^2(\mathbb{Q})$ to $\mathcal{L}^2(P)$ has the following properties.
(i) $\mathcal{K}_x 0 = 0$ and $\mathcal{K}_x 1 = 1$ a.e. $[P]$;
(ii) $\mathcal{K}_x(c_1f_1 + c_2f_2) = c_1\mathcal{K}_xf_1 + c_2\mathcal{K}_xf_2$ a.e. $[P]$ for constants $c_i \in \mathbb{R}^+$;
(iii) $\mathcal{K}_xf_1 \leq \mathcal{K}_xf_2$ a.e. $[P]$ if $f_1(x, y) \leq f_2(x, y)$ for all (x, y) ;

- (iv) if $f_n(x,y) \uparrow f(x,y) \in \mathcal{L}^2(\mathbb{Q})$ then $\mathcal{K}^y_x f_n(x,y) \uparrow \mathcal{K}^y_x f(x,y)$ a.e.[P]
- (v) $\mathbb{Q}g(x)f(x,y) = Pg(x)\mathfrak{K}_x f$ for each $g \in \mathcal{L}^2(P)$ and $f \in \mathcal{L}^2(\mathbb{Q})$.

PROOF Assertion (i) holds even without the a.e. [P] because constant functions belong to $\mathcal{L}^2(P)$.

Assertion (ii) corresponds to equality $\langle 3 \rangle$.

For (iii) it suffices to prove that $g(x) := \mathcal{K}_x f \ge 0$ a.e. [P] if $f(x, y) \ge 0$ for all (x, y). Use the fact that f - g is orthogonal to $\mathbb{1}\{x : g(x) < 0\}$ because the indicator function belongs to $\mathcal{L}^2(P)$. Thus

 $\mathbb{Q}g\{g<0\} = \mathbb{Q}f\{g<0\} \ge 0.$

The first integral would be strictly negative if $\mathbb{Q}\{g < 0\}$ were nonzero.

For (iv) note that $f - f_1 \ge f - f_n \downarrow 0$, so that $\mathbb{Q}(f - f_n)^2 \to 0$, by Dominated Convergence. Define $g(x) = \mathcal{K}_x f$ and $g_n(x) = \mathcal{K}_x f_n$. By (ii),

$$g_n(x) \uparrow G(x) := \sup_{n \in \mathbb{N}} g_n(x) \le g(x)$$
 a.e. $[P]$.

A similar Dominated Convergence argument with $g - g_1 \ge G - g_n \downarrow 0$ then shows that $P|g_n(x) - G(x)|^2 \to 0$. Property (iv) from Theorem <1> shows that

$$P|g_n(x) - g(x)|^2 \le \mathbb{Q}|f - f_n|^2 \to 0.$$

It follows that G(x) = g(x) a.e. [P].

For (v) use the fact that $f - \mathcal{K}_x f$ is orthogonal to every function in $\mathcal{L}^2(P)$.

The extension to $\mathcal{M}^+(\mathcal{A} \otimes \mathcal{B})$ is now straightforward. To avoid notational confusion I will temporarily write $\widetilde{\mathcal{K}}$ for the extension.

<8> **Lemma.** For
$$f \in \mathcal{M}^+(\mathcal{A} \otimes \mathcal{B})$$
 define $\mathcal{K}_x f = \sup_{i \in \mathbb{N}} \mathcal{K}_x(f \wedge i)$. If $f_n \in \mathcal{M}^+(\mathcal{A} \otimes \mathcal{B})$ and $f_n \uparrow f$ then $\widetilde{\mathcal{K}}_x f_n \uparrow \widetilde{\mathcal{K}}_x f$ a.e. $[P]$.

PROOF By construction we have $\widetilde{\mathcal{K}}_x f_n \leq \widetilde{\mathcal{K}}_x f_{n+1} \leq \widetilde{\mathcal{K}}_x f$ a.e. [P] for each n. Lemma <7> (iv) gives $\mathcal{K}_x(f_n \wedge i) \uparrow \mathcal{K}_x(f \wedge i)$ a.e. [P], for each $i \in \mathbb{N}$. An interchange in the order of two suprema then gives

$$\sup_{n} \widetilde{\mathfrak{K}}_{x} f_{n} = \sup_{n} \sup_{i} \mathfrak{K}_{x} (f_{n} \wedge i) = \sup_{i} \mathfrak{K}_{x} (f \wedge i) = \widetilde{\mathfrak{K}}_{x} f \quad \text{a.e.}[P],$$

which is equivalent to the asserted convergence.

I leave it to you (HW8) to figure out how to combine Lemmas <7>and <8> to deduce that $\widetilde{\mathcal{K}}$ has all the desired properties for a Kolmogorov conditional expectation operator. It is also traditional to extend this operator to give a map from $\mathcal{L}^1(\mathcal{X} \times \mathcal{Y}, \mathcal{A} \otimes \mathcal{B}, \mathbb{Q})$ to $\mathcal{L}^1(\mathcal{X}, \mathcal{A}, P)$, in much the same way that I extended integrals from \mathcal{M}^+ to \mathcal{L}^1 .

4 Bringing it all back to Ω

The probability measure \mathbb{Q} on $\mathcal{A} \otimes \mathcal{B}$ could be generated as the joint distribution of a real-valued random variable Y on $(\Omega, \mathcal{F}, \mathbb{P})$ and some arbitrary $\mathcal{F} \setminus \mathcal{A}$ -measurable map X into \mathfrak{X} .

Suppose $Y \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ and $g \in \mathcal{L}^2(\mathcal{X}, \mathcal{A}, P)$. Then f(x, y) = y belongs to $\mathcal{L}^2(\mathbb{Q})$ and $F(x) := \mathcal{K}_x f \in \mathcal{L}^2(P)$ and

$$\mathbb{P}g(X)Y = \mathbb{Q}^{x,y}g(x)y$$
$$= P^xg(x)\mathcal{K}_xy$$
$$= P^xg(x)F(x)$$
$$= \mathbb{P}q(X)F(X).$$

If you can remember back to the third lecture of the course you should agree that if $\mathcal{G} = \sigma(X)$, the smallest sigma-field on Ω for which X is $\mathcal{G}\setminus \mathcal{A}$ measurable, then every function in $\mathcal{M}^+(\Omega, \mathcal{G})$ can be written in the form h(X)for some h in $\mathcal{M}^+(\mathcal{X}, \mathcal{A})$. In consequence, every random variable in $\mathcal{L}^2(\Omega, \mathcal{G}, \mathbb{P})$ can be represented as h(X) for some h in $\mathcal{L}^2(\mathcal{X}, \mathcal{A}, P)$. In particular, g(X)and $F(X(\omega)) = \mathcal{K}_{X(\omega)} y$ from the last display both belong to $\mathcal{L}^2(\Omega, \mathcal{G}, \mathbb{P})$ and the display is asserting that Y - F(X) is orthogonal to $\mathcal{L}^2(\Omega, \mathcal{G}, \mathbb{P})$. That is, F(X) is the orthogonal projection of Y onto $\mathcal{L}^2(\Omega, \mathcal{G}, \mathbb{P})$, which is actually a closed subspace of $\mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$.

In an obvious variation on traditional notation I write $\mathbb{P}_{\mathcal{G}}$ for the map (defined only up an almost sure equivalence) for which $F = \mathbb{P}_{\mathcal{G}}Y$. That is, $\mathbb{P}_{\mathcal{G}}$ projects $\mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ onto $\mathcal{L}^2(\Omega, \mathcal{G}, \mathbb{P})$. It is called the (Kolmogorov) conditional expectation of Y given the sub-sigma-field \mathcal{G} .

This operator can be extended to a map from $\mathcal{M}^+(\Omega, \mathcal{F})$ into (equivalence classes of) $\mathcal{M}^+(\Omega, \mathcal{G})$ with the properties

- (i) $\mathbb{P}_{G}0 = 0$ and $\mathbb{P}_{G}1 = 1$ a.e. $[\mathbb{P}]$;
- (ii) $\mathbb{P}_{\mathcal{G}}(c_1Y_1 + c_2Y_2) = c_1\mathbb{P}_{\mathcal{G}}Y_1 + c_2\mathbb{P}_{\mathcal{G}}Y_2$ a.e. $[\mathbb{P}]$ for constants $c_i \in \mathbb{R}^+$;
- (iii) $\mathbb{P}_{\mathcal{G}}Y_1 \leq \mathbb{P}_{\mathcal{G}}Y_2$ a.e. $[\mathbb{P}]$ if $Y_1(\omega) \leq Y_2(\omega)$ for all ω ;
- (iv) if $Y_n(\omega) \uparrow Y(\omega)$ then $\mathbb{P}_{\mathcal{G}} Y_n \uparrow \mathbb{P}_{\mathcal{G}} Y$ a.e. $[\mathbb{P}]$;
- (v) if $G \in \mathcal{M}^+(\omega, \mathfrak{G})$ and $Y \in \mathcal{M}^+(\omega, \mathfrak{F})$ then $\mathbb{P}_{\mathfrak{G}}(GY) = G\mathbb{P}_{\mathfrak{G}}Y$ a.e. $[\mathbb{P}]$;
- (vi) $\mathbb{P}Y = \mathbb{P}(\mathbb{P}_{\mathcal{G}}Y)$ a.e. $[\mathbb{P}]$ for each $Y \in \mathcal{M}^+(\omega, \mathcal{F})$.

Again it is traditional to extend the projection $\mathbb{P}_{\mathcal{G}}$ to a map from $\mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ to $\mathcal{L}^1(\Omega, \mathcal{G}, \mathbb{P})$, defined only up to an almost sure equivalence, and having properties analogous to those of an integral.

You have probably noticed that X has disappeared from the notation, with only the fact that \mathcal{G} equals $\sigma(X)$ left as a reminder. In fact the whole theory could be worked out for a completely general sub-sigma-field \mathcal{G} of \mathcal{F} , with no mention of any X. For the special case when $\mathcal{G} = \sigma(X)$ the operator could also be written as \mathbb{P}_X .

Remark. If you want to be very cunning you could take $\mathcal{X} = \Omega$ with $\mathcal{A} = \mathcal{G}$, and X as the identity map, $X(\omega) = \omega$.

References

Pollard, D. (2001). A User's Guide to Measure Theoretic Probability. Cambridge University Press.

von Neumann, J. (1940). On rings of operators. III. Annals of Mathematics 41(1), 94–161.