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1 Projections in L2

For a measure space (X,A, µ), the set L2 = L2(X,A, µ) of all square inte-
grable, A\B(R)-measurable real functions on X would be a Hilbert space
if we worked with equivalence classes of functions that differ only on µ-
negligible sets. The corresponding set L2(X,A, µ) can be identified as a true
Hilbert space.

Lazy probabilists (like me) often ignore the distinction between L2 and L2,

referring to ‖f‖2 =
(
µ(f2)

)1/2
as a norm on L2 (rather than using the more

precise term ‘semi-norm’) and

〈f, g〉 = µ(fg) for f, g ∈ L2(X,A, µ)

as an inner product. It is true that 〈f, g〉 is linear in f for fixed g and linear
in g for fixed f , and it is true that ‖f‖2 = 〈f, f〉, but we can only deduce
that f(x) = 0 a.e.[µ] if ‖f‖2 = 0. As shown by HW3.2, the space L2 is also
complete: for each Cauchy sequence {hn : n ∈ N} in L2 there exists an h
in L2 (unique up to µ-equivalence) for which ‖hn − h‖2 → 0.
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To avoid some tedious qualifications I will slightly abuse terminology by
referring to a subset H of L2 as closed if: for each f in L2 with ‖hn − f‖2 →
0 for a sequence {hn} in H there exists an h in H for which h(x) = f(x)
a.e.[µ]. (Some authors would insist that f itself should belong to H.)

The following result underlies the existence of both Radon-Nikodym
derivatives (densities) for measures and Kolmogorov conditional expecta-
tions.

<1> Theorem. Suppose H is a closed subspace of L2(X,A, µ). For each f ∈ L2

there exists an f0 in H for which:

(i) ‖f − f0‖2 = δ := inf{‖f − h‖2 : h ∈ H};

(ii) 〈f − f0, h〉 = 0 for every h in H;

(iii) property (iii) uniquely determines f0 up to µ-equivalence;

(iv) ‖f‖22 = ‖f0‖22 + ‖f − f0‖22.

Proof The argument uses completeness of L2 and the identity

<2> ‖a+ b‖22 + ‖a− b‖22 = 2 ‖a‖22 + ‖b‖22 for all a, b ∈ L2,

an equality that results from expanding 〈a + b, a + b〉 + 〈a − b, a − b〉 then
cancelling out 〈a, b〉 terms.

By definition of the infimum, for each n ∈ N there exists an hn ∈ H for
which

‖f − hn‖2 ≤ δn := δ + n−1.

Invoke equality <2> with a = f − hn and b = f − hm:

4 ‖f − (hn + hm)/2‖22 + ‖hn − hm‖22 = 2 ‖f − hn‖22 + 2 ‖f − hm‖22 .

The first term on the left-hand side is ≥ 4δ2 because (hn+hm)/2 ∈ H. Thus

‖hn − hm‖22 ≤ 2δ2n + 2δ2m − 4δ2 → 0 as min(m,n)→∞.

That is {hn} is a Cauchy sequence, which converges in norm to an f0 in L2.
Without loss of generality (H is closed) we may assume that f0 ∈ H.

Equality (i) follows from

δ ≤ ‖f − f0‖2 ≤ ‖f − hn‖2 + ‖hn − f0‖2 → δ as n→∞.
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For (ii) note, for each h ∈ H, that the quadratic

‖f − (f0 + th)‖2 = ‖f − f0‖2 + 2t〈f − f0, h〉+ t2 ‖h‖22

achieves its minimum value δ2 at t = 0, which forces the coefficient of t to
equal zero.

For (iii) suppose f0, f1 ∈ H and both f − f0 and f − f1 are orthogonal
to each h in H. Then the difference f0 − f1 must be orthogonal to itself,
that is ‖f0 − f1‖22 = 0, forcing f0 = f1 a.e.[µ].

Equality (iv) follows from the fact that 〈f − f0, f0〉 = 0.
�

The function f0, which is unique only up to µ-equivalence, is called
an (orthogonal) projection of f onto H. Formally the projection function
πH maps an f from L2(µ) to a µ-equivalence classes of functions in H.
If we arbitrarily choose one member from each equivalence class then πH
can also be thought of as a map from L2(µ) into H, at the cost of some
caveats involving negligible sets. For example, if g1, g2 ∈ L2 and πHgi = hi
for i = 1, 2 then, for constants c1 and c2, part (iii) of the Theorem gives

<3> πH(c1g1 + c2g2) = c1πHg1 + c2πHg2 a.e.[µ],

which is as close to linearity as we can hope to get for a map that is only
defined up to a µ-equivalence.

2 Radon-Nikodym theorem

The simplest form of the theorem concerns two finite measures µ and ν
defined on some (X,A).

<4> Theorem. If µX < ∞ and µf ≥ νf for each f in M+(X,A) then there
exists an A-measurable function ∆ with 0 ≤ ∆(x) ≤ 1 for all x such that

νf = µ(f∆) for each f in M+(X,A).

The function ∆ is unique up to µ-equivalence.

Proof (sketch of a proof due to von Neumann, 1940, page 127)
Without loss of generality suppose νX = 1.
Define H = {f ∈ L2(X,A, µ) : νf = 0}. Note that H is a closed subspace

of L2: if νhn = 0 and µ|hn − f |2 → 0 then

|νf | = |ν(hn − f)| ≤ ν|hn − f | ≤
√
ν|hn − f |2 ≤

√
µ|hn − f |2 → 0,
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implying νf = 0.
Let f0 = πH1 and g = 1 − f0. Note that νg = ν1 − νf0 = 1. In

consequence µ{x : g(x) 6= 0} ≥ ν{x : g(x) 6= 0} > 0 and ‖g‖22 := µ(g2) > 0.
Suppose f ∈ L2 has νf = c. Then ν(f − cg) = 0, that is, f − cg ∈ H, so
that 0 = 〈f − cg, g〉 = µ(fg − cg2) = 0. The final equality rearranges to

νf = µ(f∆) where ∆ := g/ ‖g‖22.

Invoke the last equality with f = {∆ < 0} to get

0 ≤ ν{∆ < 0} ≤ µ (∆{∆ < 0}) ≤ 0,

with the last inequality strict unless µ{∆ < 0} = 0. Similarly

µ{∆ > 1} ≥ ν{∆ > 1} = µ (∆{∆ > 1}) ≥ µ{{∆ > 1},

with the last inequality strict unless µ{∆ > 1} = 0.
Replace ∆ by ∆{0 ≤ ∆ ≤ 1}.
For f ∈M+(X,A) take limits (MC) in ν(f ∧ n) = µ∆(f ∧ n) as n→∞.
For uniqueness a.e.[µ]: If µ(f∆1) = µ(f∆2) for all f ∈M+ consider first

f = {∆1 < ∆2} then f = {∆1 > ∆2} to deduce that ∆1 = ∆2 a.e.[µ].
�

Theorem <4> has an extension to sigma-finite measures with ν domi-
nated by µ, that is: for each A ∈ A, if µA = 0 then νA = 0.

Remark. Domination is sometimes expressed as “ν is absolutely
continuous with respect to µ”, which is often denoted by ν � µ. This
terminology borrows from the classical concept of absolute continuity
of a function defined on the real line (Pollard, 2001, Section 3.4).

<5> Theorem. If µ and ν are both sigma-finite measures with ν dominated by µ
then there exists a real-valued function ∆ ∈M+(X,A) for which

νf = µ(f∆) for each f in M+(X,A).

The function ∆ is unique up to µ-equivalence.

For an idea of the proof see Pollard (2001, Section 3.2).
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3 Conditioning

Recall the conditioning problem. We have a probability measure Q on the
product sigma-field A⊗B on X× Y, with X-marginal P . That is,

Pg = Qx,yg(x) for each g ∈M+(X,A).

Here and subsequently I identify g with a function on X × Y whose value
does not depend on the Y-coordinate.

We seek a Markov kernel K = {Kx : x ∈ X}—a family of probability
measures on B for which x 7→ KxB is A-measurable for each B ∈ B—for
which

<6> Qf(x, y) = P xKy
xf(x, y) for each f ∈M+(X× Y,A⊗B).

We can also think of K as a map from M+(X× Y,A⊗B) into M+(X,A) by
taking Kf to be the function whose value at x equals Kxf = Ky

xf(x, y). We
require this map to have the following Markov kernel properties:

(i) Kx0 = 0 and Kx1 = 1;

(ii) Kx(c1f1 + c2f2) = c1Kxf1 + c2Kxf2 for constants ci ∈ R+;

(iii) Kxf1 ≤ Kxf2 if f1(x, y) ≤ f2(x, y) for all (x, y);

(iv) if fn(x, y) ↑ f(x, y) then Ky
xfn(x, y)→ Ky

xf(x, y).

(v) if g ∈ M+(X,A) and f ∈ M+(X × Y,A ⊗ B) then Ky
x (g(x)f(x, y)) =

g(x)Kxf .

Property (v) is more a statement of the fact that Kx treats g(x) like a
constant than a requirement that needs to be checked.

As you will soon see, projections can be used to define a conditional
expectation map K : M+(X × Y,A ⊗ B) → M+(X,A) with analogous
properties:

(i) Kx0 = 0 and Kx1 = 1 a.e.[P ];

(ii) Kx(c1f1 + c2f2) = c1Kxf1 + c2Kxf2 a.e.[P ] for constants ci ∈ R+;

(iii) Kxf1 ≤ Kxf2 a.e.[P ] if f1(x, y) ≤ f2(x, y) for all (x, y);

(iv) if fn(x, y) ↑ f(x, y) then K
y
xfn(x, y) ↑ Ky

xf(x, y) a.e.[P ];
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(v) if g ∈M+(X,A) and f ∈M+(X× Y,A⊗B) then K
y
x (gf) = g(x)Kxf

a.e.[P ].

If the a.e.[P ] were not added to each line, K would correspond to a
Markov kernel. If we collect the (uncountably many) P -negligible sets into
a single P -negligible set N then a redefinition of Kx for x ∈ N could provide
a Markov kernel. Unfortunately reduction to a single P -negligible N is
not always possible and even when it is possible it takes a lot of work.
Alternatively we could just learn to live with all the a.e.[P ] constraints and
accept something less than a Markov kernel for the purposes of conditioning.
That is the choice made in much of the probability and statistics literature,
with the K sometimes being referred to as a Kolmogorov conditional
expectation operator.

3.1 Projections as conditional expectation maps

Here is how projections get into the story. We can identify L2(P ) :=
L2(X,A, P ) with a subspace of L2(Q) := L2(X × Y,A ⊗ B,Q) because
Pg(x)2 = Qg(x)2. In fact L2(P ) is then a closed subspace of L2(Q). Indeed,
suppose {gn} is a sequence in L2(P ) for which Q|gn(x) − f(x, y)|2 → 0 for
some f ∈ L2(Q). By an argument similar to HW2.2 and HW3.2, there exists
a subsequence along which gn(k)(x) → f(x, y) a.e.[Q]. Deduce that f is Q-
equivalent to lim supn(k) gn(k)(x). Minor surgery on some P -negligible sets

excludes values where the limsup equals ±∞, leaving a function in L2(P ).
If equality <6> holds, with K a Markov kernel, then g(x) = Ky

xf(x, y)
is an A-measurable function for which, by Jensen’s inequality,

Pg2 ≤ P (Ky
xf(x, y)2) ≤ Qf2 <∞.

Moreover, for each h ∈ L2(P ),

Q (f(x, y)− g(x))h(x) = P x (h(x)Ky
x(f(x, y)− g(x)) = 0.

That is, f−g is orthogonal to H in the sense of the L2(Q) inner product, the
property that identifies g(x) as one of the L2(P ) functions that represents
the orthogonal projection of f onto L2(P ).

Now try to go in the other direction. Let K denote the map that
projects L2(Q) orthogonally onto L2(P ), with Kxf denoting some arbi-
trarily choice from the P -equivalence class of possible functions. Of course,
if f(x, y) = g(x) ∈ L2(P ) we can take Kxf to equal g(x).

At the moment K is defined only on L2(Q). A limiting operation will
extend the definition to M+(A ⊗ B). Let me first record how far we have
gone towards defining a conditional expectation operator.
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<7> Lemma. The map K from L2(Q) to L2(P ) has the following properties.

(i) Kx0 = 0 and Kx1 = 1 a.e.[P ];

(ii) Kx(c1f1 + c2f2) = c1Kxf1 + c2Kxf2 a.e.[P ] for constants ci ∈ R+;

(iii) Kxf1 ≤ Kxf2 a.e.[P ] if f1(x, y) ≤ f2(x, y) for all (x, y);

(iv) if fn(x, y) ↑ f(x, y) ∈ L2(Q) then K
y
xfn(x, y) ↑ Ky

xf(x, y) a.e.[P ]

(v) Qg(x)f(x, y) = Pg(x)Kxf for each g ∈ L2(P ) and f ∈ L2(Q).

Proof Assertion (i) holds even without the a.e.[P ] because constant func-
tions belong to L2(P ).

Assertion (ii) corresponds to equality <3>.
For (iii) it suffices to prove that g(x) := Kxf ≥ 0 a.e.[P ] if f(x, y) ≥ 0 for

all (x, y). Use the fact that f − g is orthogonal to 1{x : g(x) < 0} because
the indicator function belongs to L2(P ). Thus

Qg{g < 0} = Qf{g < 0} ≥ 0.

The first integral would be strictly negative if Q{g < 0} were nonzero.
For (iv) note that f − f1 ≥ f − fn ↓ 0, so that Q (f − fn)2 → 0, by

Dominated Convergence. Define g(x) = Kxf and gn(x) = Kxfn. By (ii),

gn(x) ↑ G(x) := supn∈N gn(x) ≤ g(x) a.e.[P ].

A similar Dominated Convergence argument with g − g1 ≥ G− gn ↓ 0 then
shows that P |gn(x)−G(x)|2 → 0. Property (iv) from Theorem <1> shows
that

P |gn(x)− g(x)|2 ≤ Q|f − fn|2 → 0.

It follows that G(x) = g(x) a.e.[P ].
For (v) use the fact that f−Kxf is orthogonal to every function in L2(P ).

�

The extension to M+(A⊗B) is now straightforward. To avoid notational

confusion I will temporarily write K̃ for the extension.

<8> Lemma. For f ∈ M+(A ⊗ B) define K̃xf = supi∈NKx(f ∧ i). If fn ∈
M+(A⊗B) and fn ↑ f then K̃xfn ↑ K̃xf a.e.[P ].
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Proof By construction we have K̃xfn ≤ K̃xfn+1 ≤ K̃xf a.e.[P ] for each n.
Lemma <7> (iv) gives Kx(fn ∧ i) ↑ Kx(f ∧ i) a.e.[P ], for each i ∈ N. An
interchange in the order of two suprema then gives

supn K̃xfn = supn supiKx(fn ∧ i) = supiKx(f ∧ i) = K̃xf a.e.[P ],

which is equivalent to the asserted convergence.
�

I leave it to you (HW8) to figure out how to combine Lemmas <7>

and <8> to deduce that K̃ has all the desired properties for a Kolmogorov
conditional expectation operator. It is also traditional to extend this oper-
ator to give a map from L1(X × Y,A ⊗ B,Q) to L1(X,A, P ), in much the
same way that I extended integrals from M+ to L1.

4 Bringing it all back to Ω

The probability measure Q on A⊗B could be generated as the joint distri-
bution of a real-valued random variable Y on (Ω,F,P) and some arbitrary
F\A-measurable map X into X.

Suppose Y ∈ L2(Ω,F,P) and g ∈ L2(X,A, P ). Then f(x, y) = y belongs
to L2(Q) and F (x) := Kxf ∈ L2(P ) and

Pg(X)Y = Qx,yg(x)y

= P xg(x)Kxy

= P xg(x)F (x)

= Pg(X)F (X).

If you can remember back to the third lecture of the course you should
agree that if G = σ(X), the smallest sigma-field on Ω for which X is G\A-
measurable, then every function in M+(Ω,G) can be written in the form h(X)
for some h in M+(X,A). In consequence, every random variable in L2(Ω,G,P)
can be represented as h(X) for some h in L2(X,A, P ). In particular, g(X)
and F (X(ω)) = KX(ω)y from the last display both belong to L2(Ω,G,P) and
the display is asserting that Y −F (X) is orthogonal to L2(Ω,G,P). That is,
F (X) is the orthogonal projection of Y onto L2(Ω,G,P), which is actually
a closed subspace of L2(Ω,F,P).

In an obvious variation on traditional notation I write PG for the map
(defined only up an almost sure equivalence) for which F = PGY . That
is, PG projects L2(Ω,F,P) onto L2(Ω,G,P). It is called the (Kolmogorov)
conditional expectation of Y given the sub-sigma-field G.
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This operator can be extended to a map from M+(Ω,F) into (equivalence
classes of) M+(Ω,G) with the properties

(i) PG0 = 0 and PG1 = 1 a.e.[P];

(ii) PG(c1Y1 + c2Y2) = c1PGY1 + c2PGY2 a.e.[P] for constants ci ∈ R+;

(iii) PGY1 ≤ PGY2 a.e.[P] if Y1(ω) ≤ Y2(ω) for all ω;

(iv) if Yn(ω) ↑ Y (ω) then PGYn ↑ PGY a.e.[P];

(v) if G ∈M+(ω,G) and Y ∈M+(ω,F) then PG (GY ) = GPGY a.e.[P];

(vi) PY = P(PGY ) a.e.[P] for each Y ∈M+(ω,F).

Again it is traditional to extend the projection PG to a map from L1(Ω,F,P)
to L1(Ω,G,P), defined only up to an almost sure equivalence, and having
properties analogous to those of an integral.

You have probably noticed that X has disappeared from the notation,
with only the fact that G equals σ(X) left as a reminder. In fact the whole
theory could be worked out for a completely general sub-sigma-field G of F,
with no mention of any X. For the special case when G = σ(X) the operator
could also be written as PX .

Remark. If you want to be very cunning you could take X = Ω
with A = G, and X as the identity map, X(ω) = ω.
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