Statistics 330b/600b, Math 330b spring 2017 Homework # 1

Due: Thursday 26 January

Please attempt at least the starred problems. Please explain your reasoning. Please look at the handout latex.pdf for an explanation of why solutions consisting of a long string of sequence of \therefore 's and \therefore 's can be hard to follow.

- *[1] Suppose T maps a set \mathfrak{X} into a set \mathfrak{Y} . For each $B \subseteq \mathfrak{Y}$ and $A \subseteq \mathfrak{X}$ define $T^{-1}B := \{x \in \mathfrak{X} : T(x) \in B\}$ and $T(A) := \{T(x) : x \in A\}$. In class I asserted that
 - (i) $T^{-1} (\cup_i B_i) = \cup_i T^{-1}(B_i)$ (ii) $T^{-1} (\cap_i B_i) = \cap_i T^{-1}(B_i)$ (iii) $T^{-1} (B^c) = (T^{-1} (B))^c$

In my experience, many students also believe that

(i) $T\left(\cup_i A_i\right) = \cup_i T(A_i)$ (ii) $T\left(\cap_i A_i\right) = \cap_i T(A_i)$ (iii) $T\left(A^c\right) = \left(T\left(A\right)\right)^c$ (iv) $T^{-1}\left(T(A)\right) = A$ (v) $T\left(T^{-1}(B)\right) = B.$

In general, some of these assertions are false. Provide counterexamples for each of the false assertions. Maybe you could also give extra conditions under which the assertions are true. (Hint: All the counterexamples can be constructed using the special case shown in the picture.)

- *[2] Let \mathcal{G} denote the set of all open subsets of \mathbb{R}^2 and \mathcal{H} denote the set of all closed halfspaces in \mathbb{R}^2 , that is, sets of the form $\{(x, y) \in \mathbb{R}^2 : ax + by \leq c\}$ for constants a, b, c. Show that $\sigma(\mathcal{G}) = \sigma(\mathcal{H})$.
- [3] Suppose $\mathfrak{X} = \{1, 2, 3, 4, 5\}$ and $\mathcal{E} = \{\{1, 2\}, \{2, 3\}\}$. Define

 $\mathcal{A} = \{ A \in \sigma(\mathcal{E}) : \text{ either } \{4, 5\} \subseteq A \text{ or } \{4, 5\} \subseteq A^c \}.$

- (i) Show that \mathcal{A} is a sigma-field with $\mathcal{E} \subseteq \mathcal{A}$.
- (ii) Explain why $\sigma(\mathcal{E})$ consists of exactly 16 subsets of \mathfrak{X} .
- (iii) [alternative to (i) and (ii)] Suppose \mathcal{E} is a collection of subsets of some \mathcal{X} and a and b are two distinct points of \mathcal{X} . Suppose $\mathbb{1}_E(a) = \mathbb{1}_E(b)$ for all $E \in \mathcal{E}$. Show that $\mathbb{1}_A(a) = \mathbb{1}_A(b)$ for all $A \in \sigma(\mathcal{E})$.