Statistics 330b/600b, Math 330b spring 2017 Homework # 2 Due: Thursday 2 February

Please attempt at least the starred problems. Please explain your reasoning. Please, please, please look at the handout <u>latex.pdf</u> for an explanation of why solutions consisting of a long string of sequence of \therefore 's and \therefore 's can be hard to follow.

- *[1] Suppose $(\mathfrak{X}, \mathcal{A}, \mu)$ is a measure space with $\mu \mathfrak{X} < \infty$. Suppose also that $\{f_n : n \in \mathbb{N}\}$ is a sequence of $\mathcal{A} \setminus \mathcal{B}(\mathbb{R})$ -measurable real functions for which $f_n(x) \to 0$ as $n \to \infty$, for each $x \in \mathfrak{X}$. Show that $\mu \{x \in \mathfrak{X} : |f_n(x)| \ge \epsilon\} \to 0$ as $n \to \infty$ for each fixed $\epsilon > 0$. Hint: Think Dominated Convergence with $g_n(x) = \mathbb{1}\{|f_n| \ge \epsilon\}$.
- *[2] Suppose $\{f_n : n \in \mathbb{N}\}\$ is a sequence of real-valued $\mathcal{B}(\mathcal{R})$ -measurable functions on a measure space $(\mathcal{X}, \mathcal{A}, \mu)$ for which: for each $\epsilon > 0$ and $\delta > 0$ there exists an $n_{\epsilon, \delta}$ for which

 $\mu\{x: |f_n(x) - f_m(x)| > \delta\} < \epsilon \qquad \text{whenever } m, n \ge n_{\epsilon,\delta}.$

(i) Write n(k) for the $n_{\epsilon,\delta}$ corresponding to $\epsilon = \delta = 2^{-k}$, for $k \in \mathbb{N}$. [You may assume that $n(1) < n(2) < \ldots$ Why?] Show that

$$\mu \sum_{k \in \mathbb{N}} \mathbb{1}\{x : |f_{n(k)}(x) - f_{n(k+1)}(x)| > 2^{-k}\} < \infty.$$

(ii) Deduce that there exists a μ -negligible set N for which $\{f_{n(k)}(x) : k \in \mathbb{N}\}$ is a Cauchy sequence of real numbers for each x in N^c . Define

$$f(x) := \limsup_k f_{n(k)}(x) \mathbb{1}\{x \in N^c\}.$$

Show that $f_{n(k)}(x) \to f(x)$ as $k \to \infty$, for each x in N^c .

- *[3] Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Suppose $\{X_i : i \in \mathbb{N}\}$ are real-valued random variables (that is, $\mathcal{F} \setminus \mathcal{B}(\mathbb{R})$ -measurable real-valued functions) all defined on Ω . Let \mathcal{B} denote the product sigma-field on $\mathbb{R}^{\mathbb{N}}$.
 - (i) Show that the map $X : \Omega \to \mathbb{R}^{\mathbb{N}}$ defined by $X(\omega) = (X_1(\omega), X_2(\omega), \dots)$ is $\mathcal{F}\setminus \mathcal{B}$ -measurable. Write P for the distribution of X.
 - (ii) Define $S : \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$ by Sx = y where $y_i = x_{i+1}$ for $i \in \mathbb{N}$. Show that S is $\mathbb{B} \setminus \mathbb{B}$ -measurable. Write Q for the image of P under S.
 - (iii) Suppose that, for each m and k in \mathbb{N} , the random vector (X_1, \ldots, X_m) has the same distribution as the random vector $(X_{1+k}, \ldots, X_{m+k})$. Show that Q = P. Hint: Define \mathcal{C} as the collection of all sets of the form

$$\{x \in \mathbb{R}^{\mathbb{N}} : (x_1, \dots, x_m) \in D\}$$

where m ranges over \mathbb{N} and D ranges over all product-measurable subsets of \mathbb{R}^m . Show that \mathcal{C} is a field for which $\mathcal{B} = \sigma(\mathcal{C})$ then use a generating class argument.

PTO

- [4] For each *i* in some index set *I* suppose \mathfrak{X}_i is a set equipped with a sigma-field \mathcal{A}_i . The product space $\mathfrak{X}_I = \prod_{i \in I} \mathfrak{X}_i$ is defined as the set of all functions $x : I \to \bigcup_{i \in I} \mathfrak{X}_i$ such that $x_i \in \mathfrak{X}_i$ for each *i*. Let \mathcal{E}_i denote the collection of all sets of the form $\{x \in \mathfrak{X}_I : x_i \in A\}$ with $A \in \mathcal{A}_i$. For each $S \subseteq I$ define $\mathcal{A}_S = \sigma(\bigcup_{i \in S} \mathcal{E}_i)$.
 - (i) Suppose I is uncountable. Show that $\mathcal{A}_I = \bigcup \{ \mathcal{A}_S : S \text{ is a countable subset of } I \}.$
 - (ii) Again suppose I is uncountable. For each f in $\mathcal{M}^+(\mathfrak{X}_I, \mathcal{A}_I)$ show that there exists a countable subset S of I such that $f(x) = g_S(x_S)$, where x_S denotes the restriction of x to S and g_S is a suitably measurable function on \mathfrak{X}_S .