Statistics 330b/600b, Math 330b spring 2017 Homework # 3 Due: Thursday 9 February

Please attempt at least the starred problems.

- *[1] Suppose $(\mathfrak{X}, \mathcal{A}, \mu)$ is a measure space with $\mu \mathfrak{X} < \infty$. Suppose also that $g_1, g_2 \in \mathcal{M}^+(\mathfrak{X}, \mathcal{A})$ have the property that $\mu(g_1 \mathbb{1}_A) = \mu(g_2 \mathbb{1}_A)$ for all A in \mathcal{A} . Prove that $g_1 = g_2$ a.e. $[\mu]$. Hint: Consider sets $A_{r,s} = \{x \in \mathfrak{X} : g_1(x) < r < s < g_2(x)\}$. What do you know about $\mu(g_i \mathbb{1}_{A_{r,s}})$?
- *[2] Suppose $\{f_n : n \in \mathbb{N}\} \subset \mathcal{L}^{\Psi}(\mathcal{X}, \mathcal{A}, \mu)$ where $\Psi : \mathbb{R}^+ \to \mathbb{R}^+$ is convex and nondecreasing, with $\Psi(0) = 0$ and $\Psi(r) \to \infty$ as $r \to \infty$. Suppose the sequence is Cauchy: for each $\epsilon > 0$ there exists an n_{δ} such that $\|f_n - f_m\|_{\Psi} < \delta$ for $m, n \ge n_{\delta}$.
 - (i) Choose r so large that $\Psi(r) > 1/\epsilon$. Show that, for $\min(n,m) > n_{\delta/r}$,

$$\mu\{x : |f_n(x) - f_m(x)| > \delta\} \le \mu \Psi(r|f_n(x) - f_m(x)|/\delta) / \Psi(r) < \epsilon$$

(ii) Deduce from HW2.2 that there exists an $\mathcal{A}\setminus\mathcal{B}(\mathbb{R})$ -measurable real-valued function f and a subsequence along which $f_{n(k)}(x) \to f(x)$ a.e. $[\mu]$. If n is large enough invoke Fatou to show that

$$1 \ge \liminf_{k \to \infty} \mu \Psi \left(|f_n(x) - f_{n(k)}(x)| / \epsilon \right) \ge \mu \Psi \left(|f_n(x) - f(x)| / \epsilon \right).$$

(iii) Deduce that $||f_n - f||_{\Psi} \to 0$.

*[3] Suppose $f_1, \ldots, f_k \in \mathcal{M}^+(\mathcal{X}, \mathcal{A})$ and $\theta_1, \ldots, \theta_k$ are strictly positive numbers that sum to one. Let μ be a measure on \mathcal{A} . Show that

$$\mu \prod_{i \le k} f_i^{\theta_i} \le \prod_{i \le k} (\mu f_i)^{\theta_i}$$

by following these steps. You may use the inequality

 $<\!\!1\!\!>$

$$\sum_{i=1}^{k} a_i^{\theta_i} \le \sum_{i=1}^{k} \theta_i a_i \quad \text{for all } a_i \in [0, \infty),$$

which, as explained in class, is a simple consequence of the concavity of the log function.

- (i) Explain why the inequality is trivially true if $\mu f_i = 0$ for at least one *i*.
- (ii) Explain why the inequality is trivially true if $\mu f_i > 0$ for all i and $\mu f_i = +\infty$ for at least one i.
- (iii) Explain why there is no loss of generality in assuming that $\mu f_i = 1$ for each i and $f_i(x) < \infty$ for each x and i.
- (iv) Complete the proof by considering the inequality $\langle 1 \rangle$ with $a_i = f_i(x)$.

Remark. Textbooks often contain the the special case where k = 2 and $\theta_1 = 1/p$ and $\theta_2 = 1/q$ and $f_1 = |g_1|^p$ and $f_2 = |g_2|^q$, with the assertion that $|\mu(g_1g_2)| \le \mu |g_1g_2| \le (\mu |g_1|^p)^{1/p} (\mu |g_2|^q)^{1/q}$.

[4] Suppose \mathcal{A} is a sigma-field on a set \mathfrak{X} and μ is a measure on \mathcal{A} . Write \mathfrak{N}_{μ} for $\{N \in \mathcal{A} : \mu N = 0\}$. Define

$$\mathcal{A}_{\mu} := \{ B \subseteq \mathfrak{X} : \exists A \in \mathcal{A}, N \in \mathcal{N}_{\mu} \text{ such that } |\mathbb{1}_B - \mathbb{1}_A| \leq \mathbb{1}_N \}.$$

- (i) Show that \mathcal{A}_{μ} is a sigma-field.
- (ii) If $|\mathbb{1}_B \mathbb{1}_{A_i}| \leq \mathbb{1}_{N_i}$ for i = 1, 2, with $A_i \in \mathcal{A}$ and $N_i \in \mathcal{N}_{\mu}$, show that $\mu A_1 = \mu A_2$.
- (iii) If $|\mathbb{1}_B \mathbb{1}_A| \leq \mathbb{1}_N$ with $A \in \mathcal{A}$ and $N \in \mathcal{N}_\mu$ define $\nu B = \mu A$. Show that ν is a well defined measure on \mathcal{A}_μ whose restriction to \mathcal{A} equals μ .