Statistics 330b/600b, Math 330b spring 2017 Homework # 6 Due: Thursday 2 March

- *[1] Suppose μ and ν are sigma-finite measures on $\mathcal{B}(\mathbb{R})$ and $\lambda = \mu \otimes \nu$. Define $\mathbb{A}_{\mu} = \{x \in \mathbb{R} : \mu\{x\} > 0\}$ and $\mathbb{A}_{\nu} = \{y \in \mathbb{R} : \nu\{y\} > 0\}.$
 - (i) Explain why the set $D := \{(x, y) \in \mathbb{R}^2 : x = y\}$ (the 'diagonal') belongs to $\mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$.
 - (ii) Show that the set \mathbb{A}_{μ} of atoms is at worst countably infinite. Hint: How many points x with $\mu\{x\} \ge 1/n$ can there be inside a set B with $\mu B < \infty$?
 - (iii) Explain why the function $h(x) := \nu^y \{x = y\}$ is well defined and $\mathcal{B}(\mathcal{R})$ -measurable. Show that $h(x) = \sum_{\alpha \in \mathbb{A}_n} \nu\{\alpha\} \mathbb{1}\{x = \alpha\}.$
 - (iv) Show that $\lambda(D) = \sum_{\alpha \in \mathbb{A}_{\mu} \cap \mathbb{A}_{\mu}} \mu\{\alpha\} \nu\{\alpha\}.$
- *[2] Suppose $f \in \mathcal{L}^1(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu)$ and $g \in \mathcal{L}^1(\mathbb{R}, \mathcal{B}(\mathbb{R}), \nu)$, with μ and ν as in Problem [1]. (i) Show that the function $\psi(x, y) = f(x)g(y)$ belongs to $\mathcal{L}^1(\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2), \lambda)$.
 - (ii) Define $F(y) := \mu^x (f(x)\{x \le y\})$ and $G(x) := \nu^y (g(y)\{y \le x\})$. Show that

$$\mu^{x} (G(x)f(x)) + \nu^{y} (F(y)g(y)) = (\mu f)(\nu g) + \sum_{\alpha \in \mathbb{A}_{\mu} \cap \mathbb{A}_{\nu}} f(\alpha)g(\alpha)\mu\{\alpha\}\nu\{\alpha\}.$$

Hint: $\mathbb{1}\{(x,y) \in \mathbb{R}^{2} : x \leq y\} + \mathbb{1}\{(x,y) \in \mathbb{R}^{2} : x \geq y\} = ?.$

Remark. This result generalizes the classical formula for integration by parts.

*[3] Define $\Psi(x) = e^{x^2} - 1$ for $x \ge 0$. Let X be a random variable, defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Show that $X \in \mathcal{L}^{\Psi}(\Omega, \mathcal{F}, \mathbb{P})$ if and only if, for some positive constants c_1, c_2 , and c_3 ,

$$\mathbb{P}\{|X| \ge x\} \le c_1 \exp(-c_2 x^2) \quad \text{for all } |x| \ge c_3.$$

Hint: First show that $\Psi(x) = \int_0^\infty e^t \mathbb{1}\{t \le x^2\} dt$.

*[4] Let $(\mathfrak{X}, \mathcal{A}, \mu)$ and $(\mathfrak{Y}, \mathfrak{B}, \nu)$ be two measure spaces, with both μ and ν sigma-finite. Write \mathfrak{G} for the set of all functions expressible as finite linear combinations of indicators of measurable rectangles. That is, a typical g in \mathfrak{G} is expressible as a finite sum $\sum_{i=1}^{k} \alpha_i \mathbb{1}\{x \in A_i, y \in B_i\}$ for some sets $A_i \in \mathcal{A}$ and $B_i \in \mathfrak{B}$ and real numbers α_i , for i = 1, 2, ..., k.

Show that for each f in $\mathcal{L}^1(\mathfrak{X} \times \mathfrak{Y}, \mathcal{A} \otimes \mathcal{B}, \mu \otimes \nu)$ and each $\epsilon > 0$ there exist a $g \in \mathfrak{G}$ such that $\mu \otimes \nu |f - g| < \epsilon$. Follow these steps.

- (i) First suppose that both μ and ν are finite measures and |f| is bounded. Use a lambda-space argument to establish the asserted approximation property.
- (ii) Extend to the sigma-finite case.
- [5] Suppose $(\mathfrak{X}, \mathcal{A}, \mu)$ is a sigma-finite measure space. The weak $\mathcal{L}^{q}(\mu)$ "norm" of a measurable function f is defined as $\|f\|_{q,\infty} := \sup_{t>0} t\mu\{|f| > t\}^{1/q}$.
 - (i) Show that $||f||_{q,\infty} \le ||f||_q := (\mu |f|^q)^{1/q}$.
 - (ii) Show $\|\lambda f\|_{q,\infty} = \lambda \|f\|_{q,\infty}$ for each positive constant λ .
 - (iii) Suppose $1 \leq r < q < \infty$. Show that $||f||_{q,\infty} \geq b_{r,q} ||f||_r$ where $b_{r,q}$ denotes the constant $(1 (r/q))^{1/r}$.
 - (iv) Does $\|\cdot\|_{q,\infty}$ satisfy the triangle inequality?