Statistics 330b/600b, Math 330b spring 2017 Homework # 8 Due: Thursday 30 March

Radon-Nikodym

[1] Suppose λ and ν are both finite measures both defined on $(\mathfrak{X}, \mathcal{A})$. Suppose also that ν is dominated by μ : if $A \in \mathcal{A}$ and $\lambda A = 0$ then $\nu A = 0$. Follow these steps to show that there exists a real-valued function in $\mathcal{M}^+(\mathfrak{X}, \mathcal{A})$ for which

 $\nu f = \lambda(f\Delta)$ for each $f \in \mathcal{M}^+(\mathcal{X}, \mathcal{A})$.

- (i) Define $\mu = \lambda + \nu$. Deduce from the projection.pdf handout that there exists an \mathcal{A} -measurable function Δ_0 , with $0 \leq \Delta_0(x) \leq 1$ for all x, such that $\nu f = \mu(f\Delta_0)$ for each $f \in \mathcal{M}^+(\mathcal{X}, \mathcal{A})$. (No need to repeat the whole proof from the handout.)
- (ii) Show that $\mu{\Delta_0 = 1} = 0$. Hint: $\nu{\Delta_0 = 1} = ??$.
- (iii) Define $\Delta = \{\Delta_0 < 1\}\Delta_0/(1 \Delta_0)$. For a given f in $\mathcal{M}^+(\mathfrak{X}, \mathcal{A})$ and each i in \mathbb{N} define

$$f_i = \left(\frac{f \wedge i}{1 - \Delta_0}\right) \left\{\Delta_0 \le 1 - i^{-1}\right\}$$

Rearrange terms in the equality $\nu f_i = \mu(f_i \Delta_0)$, explaining why there are no $\infty - \infty$ problems, then let *i* tend to infinity.

(iv) Extend the result to the case of sigma-finite measures λ and ν under the same domination condition.

Conditioning

The projection.pdf handout (Section 4) described the traditional approach to Kolmogorov conditional expectations where everything is carried out on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and the conditioning information is given by a sub-sigma-field \mathcal{G} of \mathcal{F} . The handout described the conditional expectation as a map $\mathbb{P}_{\mathcal{G}}$ from $\mathcal{M}^+(\Omega, \mathcal{F})$ into $\mathcal{M}^+(\Omega, \mathcal{G})$, with $\mathbb{P}_{\mathcal{G}}f$ defined only up to a \mathbb{P} -equivalence, having the properties:

- (a) $\mathbb{P}_{9}0 = 0$ and $\mathbb{P}_{9}1 = 1$ a.e.[\mathbb{P}];
- (b) $\mathbb{P}_{9}(c_{1}Y_{1}+c_{2}Y_{2})=c_{1}\mathbb{P}_{9}Y_{1}+c_{2}\mathbb{P}_{9}Y_{2}$ a.e. $[\mathbb{P}]$ for constants $c_{i} \in \mathbb{R}^{+}$;
- (c) $\mathbb{P}_{\mathcal{G}}Y_1 \leq \mathbb{P}_{\mathcal{G}}Y_2$ a.e. $[\mathbb{P}]$ if $Y_1(\omega) \leq Y_2(\omega)$ for all ω ;
- (d) if $Y_n(\omega) \uparrow Y(\omega)$ then $\mathbb{P}_{\mathcal{G}} Y_n \uparrow \mathbb{P}_{\mathcal{G}} Y$ a.e. $[\mathbb{P}]$;
- (e) if $G \in \mathcal{M}^+(\omega, \mathcal{G})$ and $Y \in \mathcal{M}^+(\omega, \mathcal{F})$ then $\mathbb{P}_{\mathcal{G}}(GY) = G\mathbb{P}_{\mathcal{G}}Y$ a.e. $[\mathbb{P}]$;
- (f) $\mathbb{P}Y = \mathbb{P}(\mathbb{P}_{\mathcal{G}}Y)$ a.e. $[\mathbb{P}]$ for each $Y \in \mathcal{M}^+(\omega, \mathcal{F})$.

It also mentioned that $\mathbb{P}_{\mathcal{G}}$ has a modification as a map from $\mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ to $\mathcal{L}^1(\Omega, \mathcal{G}, \mathbb{P})$.

Problem [2] presents a more direct way to get the second form of $\mathbb{P}_{\mathfrak{S}}$ as an extension of projection from domain $\mathcal{L}^2(\Omega, \mathfrak{F}, \mathbb{P})$ to domain $\mathcal{L}^1(\Omega, \mathfrak{F}, \mathbb{P})$. To stress the analogy with Markov kernels I write $\mathfrak{K}_{\omega}f$ instead of $\mathbb{P}_{\mathfrak{S}}f$.

For Problem [2] I also ask you to prove the conditional form of Dominated Convergence, rather than the conditional form of Monotone Convergence. MC seems more appropriate with $\mathcal{M}^+(\mathfrak{F})$, where we do not need to worry about finiteness or integrability for limits.

- [2] Suppose $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space and \mathcal{G} is a sub-sigma-field of \mathcal{F} . Abbreviate $\mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ to $\mathcal{L}^2(\mathcal{F})$ and $\mathcal{L}^2(\Omega, \mathcal{G}, \mathbb{P})$ to $\mathcal{L}^2(\mathcal{G})$. Abbreviate $\mathcal{M}_{bdd}(\Omega, \mathcal{G})$ to $\mathcal{M}_{bdd}(\mathcal{G})$.
 - (i) Show that $\mathcal{L}^2(\mathcal{G})$ is a closed subspace of $\mathcal{L}^2(\mathcal{F})$, in the sense defined on the projection.pdf handout.
 - (ii) For each $f \in \mathcal{L}^2(\mathcal{F})$ write $\pi_{\omega} f$ for a function (chosen arbitrarily from the equivalence class of possibilities) in $\mathcal{L}^2(\mathcal{G})$ for which $f \pi_{\omega} f \perp \mathcal{L}^2(\mathcal{G})$. For all f, f_1, f_2 in $\mathcal{L}^2(\mathcal{F})$ show that
 - (a) $\pi_{\omega} 0 = 0$ and $\pi_{\omega} 1 = 1$ a.e.[P]
 - (b) $\mathbb{P}\pi_{\omega}f = \mathbb{P}f$
 - (c) $\pi_{\omega}(G_1f_1+G_2f_2) = G_1(\omega)\pi_{\omega}f_1+G_2(\omega)\pi_{\omega}f_2$ a.e. $[\mathbb{P}]$ for all $G_1, G_2 \in \mathcal{M}_{bdd}(\mathcal{G})$
 - (d) if $f \ge 0$ a.e. $[\mathbb{P}]$ then $\pi_{\omega} f \ge 0$ a.e. $[\mathbb{P}]$
 - (iii) Suppose $f \in \mathcal{L}^1(\mathcal{F})$ and $\{f_n : n \in \mathbb{N}\}$ is a sequence in $\mathcal{L}^2(\mathcal{F})$ for which $\mathbb{P}|f_n f| \to 0$ as $n \to \infty$. Use (c) and (d) to show that $\{\pi_{\omega}f_n : n \in \mathbb{N}\}$ is a Cauchy sequence in $\mathcal{L}^1(\mathcal{G})$. Deduce that there is a $g(\omega) \in \mathcal{L}^1(\mathcal{G})$ for which $\mathbb{P}|\pi_{\omega}f_n - g| \to 0$. Hint: First use (d) to show that $|\pi_{\omega}h| \leq \pi_{\omega}|h|$ a.e. $[\mathbb{P}]$ for each h in $\mathcal{L}^2(\mathcal{F})$.
 - (iv) With f_n, f, g as in part (iii), show that

$$\mathbb{P}fG = \mathbb{P}gG$$
 for each $G \in \mathcal{M}_{bdd}(\mathcal{G})$.

Also show that if g_1 is another function in $\mathcal{L}^1(\mathfrak{G})$ that satisfies an analogous set of equalities then $g_1 = g$ a.e. [P]. (*Hint: You solved a similar problem on HW3.*) Denote by $\mathcal{K}_{\omega}f$ any g in $\mathcal{L}^1(\mathfrak{G})$ (chosen arbitrarily from the P-equivalence class) for which $\langle 1 \rangle$ holds.

- (v) For all $f, f_1, f_2 \in \mathcal{L}^1(\mathcal{F})$ prove that the analogs of the four properties listed in (ii) hold if π_{ω} is replaced by \mathcal{K}_{ω} . *Hint: You could approximate* f, f_1, f_2 *in the* $\mathcal{L}^1(\mathcal{F})$ *sense by functions from* $\mathcal{L}^2(\mathcal{F})$ *, as in part (iii), then deduce the results as limiting forms of the corresponding results from (ii). Alternatively, you could argue directly from* <1>, *using (iii) purely as an existence proof. For example, if* $g_i = \mathcal{K}_{\omega} f_i$ *then you should explain why* $\mathbb{P}(f_1 + f_2 - g_1 - g_2) G = 0$ *for each* $G \in \mathcal{M}_{bdd}(\mathcal{G})$.
- (vi) Suppose $\{f_n : n \in \mathbb{N}\} \subset \mathcal{L}^1(\mathcal{F}) \text{ and } f_n(\omega) \to f(\omega) \text{ for each } \omega \text{ (or even just a.e.}[\mathbb{P}]).$ Suppose also that there is an F in $\mathcal{L}^1(\mathcal{F})$ for which $\sup_n |f_n(\omega)| \leq F(\omega)$ for every ω . Show that $\mathcal{K}_{\omega}f_n \to \mathcal{K}_{\omega}f$ a.e. $[\mathbb{P}]$. Hint: Show that $2F(\omega) \geq F_n(\omega) := \sup_{i\geq n} |f_n(\omega) - f(\omega)| \downarrow 0$ and $\mathbb{P}F_n \downarrow 0$ and $\mathcal{K}_{\omega}F_n(\omega) \geq \sup_{i\geq n} |\mathcal{K}_{\omega}f_n - \mathcal{K}_{\omega}f|$ a.e. $[\mathbb{P}]$.
- [3] Here is an alternative to Problem [2], which shows how to extend the projection map π on $\mathcal{L}^2(\mathcal{F})$ to a map on $\mathcal{M}^+(\mathcal{F})$ with the properties for $\mathbb{P}_{\mathcal{G}}$ listed on the previous page. For each f in $\mathcal{M}^+(\mathcal{F})$ define

$$\mathcal{K}_{\omega}f := g(\omega) := \sup_{i \in \mathbb{N}} \pi_{\omega}f_i \quad \text{where } f_i = f \wedge i.$$

- (i) Explain why $g_i(\omega) := \pi_\omega f_i \uparrow g(\omega) \in \mathcal{M}^+(\mathcal{G})$ a.e. $[\mathbb{P}]$.
- (ii) Explain why

 $<\!\!2\!\!>$

$$\mathbb{P}(fG) = \lim_{i} \mathbb{P}(f_iG) = \lim_{i} \mathbb{P}(g_iG) = \mathbb{P}(gG)$$

for each G in the set $\mathcal{M}^+_{bdd}(\mathfrak{G})$ of all bounded, nonnegative, \mathfrak{G} -measurable functions. (iii) Show that equality $\langle 2 \rangle$ characterizes $g \in \mathcal{M}^+(\mathfrak{G})$ up to \mathbb{P} -equivalence.

(iv) Use equality <2> to establish the properties for $\mathbb{P}_{\mathcal{G}}$ listed on the previous page. Note that you cannot be as free with subtraction as with part (v) of Problem [2]. For example, if $f_i \in \mathcal{M}^+(\mathcal{F})$ and $g_i(\omega) = \mathcal{K}_{\omega} f_i$ then why is the equality $\mathbb{P}(f_1 + f_2)G = \mathbb{P}(g_1 + g_2)G$ true but $\mathbb{P}(f_1 + f_2 - g_1 - g_2)G = 0$ is suspect?