Statistics 330b/600b, Math 330b spring 2017 Homework # 9 Due: Thursday 6 April

- *[1] Let $\mathcal{P} = \{\mathbb{P}_{\theta} : \theta \in \Theta\}$ be a set of probability measures all defined on the same (Ω, \mathcal{F}) . Suppose also that there exists a sigma-finite measure λ on \mathcal{F} that dominates each \mathbb{P}_{θ} , with $d\mathbb{P}_{\theta}/d\lambda = p(\omega, \theta) = p_{\theta}(\omega)$.
 - (i) Suppose $\{\Omega_i : i \in \mathbb{N}\}\$ is a partition of Ω into \mathcal{F} -measurable sets with $0 < \lambda \Omega_i < \infty$ for each *i*. Define μ as the measure with density $\gamma(\omega) = \sum_{i \in \mathbb{N}} 2^{-i} \mathbb{1}\{\omega \in \Omega_i\}/\lambda \Omega_i$ with respect to λ . Show that $\mu \Omega < \infty$ and $d\mathbb{P}_{\theta}/d\mu = p(\omega, \theta)/\gamma(\omega)$.
 - (ii) Define $G_{\theta} = \{\omega \in \Omega : p_{\theta}(\omega) > 0\}$. Write \mathcal{D} for the collection of all countable subsets of Θ . For each D in \mathcal{D} define $G_D = \bigcup_{\theta \in D} G_{\theta}$. Show that there exists an S in \mathcal{D} for which $\mu G_S = \sup_{D \in \mathcal{D}} \mu G_D$.
 - (iii) Enumerate the S from part (ii) as $\{\theta_i : i \in \mathbb{N}\}$. Define $\mathbb{P} = \sum_{i \in \mathbb{N}} 2^{-i} \mathbb{P}_{\theta_i}$. Show that $d\mathbb{P}/d\mu = \rho(\omega)/\gamma(\omega)$ where $\rho(\omega) := \sum_{i \in \mathbb{N}} 2^{-i} p(\omega, \theta_i)$.
 - (iv) For each θ , show that \mathbb{P}_{θ} is dominated by \mathbb{P} with density

$$d\mathbb{P}_{\theta}/d\mathbb{P} = \mathbb{1}\{\omega: \rho(\omega) > 0\}p(\omega,\theta)/\rho(\omega).$$

Hint: First show that $G_S = \{\rho > 0\}$ and $\mu(G_\theta \setminus G_S) = 0$.

*[2] The handout **Ergodic.pdf** explained what it means for a measurable map $T: \Omega \to \Omega$ to be measure preserving, for a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. It also defined an \mathcal{F} -measurable real-valued function h on Ω to be **invariant** if $h(T\omega) = h(\omega)$ for each ω .

Suppose g is an \mathcal{F} -measurable real-valued function on Ω for which $g(T\omega) = g(\omega)$ a.e.[\mathbb{P}]. Show that there is an invariant h for which $g(\omega) = h(\omega)$ a.e.[\mathbb{P}]. *Hint:* Consider $\limsup n^{-1} \sum_{0 \le i \le n} g(T^i \omega)/n$.

*[3] The handout **Ergodic.pdf** proved that if $f \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and

$$S_n(\omega) = f(\omega) + f(T\omega) + \dots + f(T^{n-1}\omega)$$

for a measure preserving transformation T then

$$S_n(\omega)/n \to Z(\omega) = \mathbb{P}_{\mathfrak{I}} f$$
 a.e. $[\mathbb{P}]$.

The handout also asserted that $\mathbb{P}|S_n/n - Z| \to 0$. Prove this assertion. *Hint: For an appropriate constants* C, *split* f *into a sum of* $f_1 = f\{|f| \leq C\}$ *and* $f_2 = f\{|f| > C\}$, with corresponding decompositions $S_n = S_{n,1} + S_{n,2}$ and $\mathbb{P}_3 f = Z_1 + Z_2$.