Statistics 330/600, springl 2017 Homework #10 solutions

- *[1] Suppose $\{\mathcal{F}_n : n \in \mathbb{N}_0\}$ is a filtration defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and $\{X_n : n \in \mathbb{N}_0\}$ is a sequence of real-valued random variables adapted to that filtration. Suppose also that σ , σ_1 , and σ_2 are stopping times for the filtration. For each of the following six cases either prove that τ is a stopping time or give an example to show that it need not be a stopping time.
 - (i) $\tau = \inf\{i \ge \sigma : X_i \in B\}$ for a given Borel set B

SOLUTION: For each $n \in \mathbb{N}_0$,

 $\{\tau(\omega) \le n\} = \bigcup_{i=0}^n \bigcup_{i=1}^n \{\sigma(\omega) = j, X_i(\omega) \in B\}.$

Check that $\{\sigma = j, X_i \in B\} \in \mathcal{F}_i \subseteq \mathcal{F}_n$.

- (ii) $\tau = \sigma_1 \wedge \sigma_2$ (minimum) or $\tau = \sigma_1 \vee \sigma_2$ (maximum)
- (*iii*) $\tau = \sigma + 3 \text{ or } \tau = (\sigma 3)^+$
- (iv) $\tau = \operatorname{argmax}_i \{ X_i : 1 \le i \le k \}.$

SOLUTION: Interpret the argmax as the first *i* for which $X_i(\omega) = M(\omega) = \max_{1 \le j \le k} X_j(\omega)$. Then

 $\{\omega: \tau(\omega) \le 1\} = \{\omega: X_1(\omega) = M(\omega)\} = \{\omega: X_1(\omega) \ge \max_{2 \le j \le k} X_j(\omega)\}.$

You needed to create an example where this set is not \mathfrak{F}_1 -measurable. For example, suppose $\Omega = \{-1,1\}^k$ with $\xi_i(\omega)$ being the *i*th coordinate and $\mathfrak{F}_i = \sigma\{\xi_1,\ldots,\xi_i\}$. If $X_i(\omega) = i\xi_i(\omega)$ then

 $\{\tau(\omega) \le 1\} = \{\omega : \max_{2 \le j} \xi_j(\omega) = -1\} \notin \mathcal{F}_1.$

Of course it would suffice to take k equal to 2 for the purposes of a counterexample.

*[2] Suppose $\Omega = (0, 1]$ and \mathbb{P} equals Lebesgue measure restricted to $\mathfrak{B}(0, 1]$. Suppose also that μ is another measure on $\mathfrak{B}(0, 1]$ for which $\mu B \leq \mathbb{P}B$ for each $B \in \mathfrak{B}(0, 1]$. Define $E_{i,k} = ((i-1)/2^k, i/2^k]$ and $\mathcal{E}_k = \{E_{i,k} : 1 \leq i \leq 2^k\}$ and $\mathcal{E} = \bigcup_{k \in \mathbb{N}_0} \mathcal{E}_k$. Define $\mathfrak{F}_n = \sigma(\mathcal{E}_n)$ and

$$X_{\boldsymbol{k}}(\omega) = \sum_{E \in \mathcal{E}_k} \{ \omega \in E \} \frac{\mu E}{\mathbb{P} E}.$$

Show that $\{(X_n, \mathcal{F}_n) : n \in \mathbb{N}_0\}$ is a martingale. Deduce that X_n converges both almost surely and in \mathcal{L}^1 to a random variable X for which $\mu B = \mathbb{P}(XB)$ for each $B \in \mathcal{B}(0, 1]$. SOLUTION: It was easy to get involved in a lot of unnecessary notation with this problem. The idea was to explain how Radon-Nikodym can be proved using martingales, at least in this simple case.

It helps to first note that each member of \mathfrak{F}_k is either the empty set or the union of finitely many members of \mathcal{E}_k . The fact that each Ein \mathcal{E}_k is a union of two sets in \mathcal{E}_{k+1} implies that $\mathfrak{F}_k \subseteq \mathfrak{F}_{k+1}$. That is, we have a filtration.

You should check that $\mathcal{B}(0,1] = \mathcal{F}_{\infty} = \sigma(\mathcal{D})$ where $\mathcal{D} = \bigcup_k \mathcal{F}_k$.

A function f on (0,1] is \mathcal{F}_k -measurable if and only if it takes a constant value on each E in \mathcal{E}_k , that is, $f(\omega) = \sum_{E \in \mathcal{E}_k} \{\omega \in E\} f_E$ for real numbers $\{f_E : E \in \mathcal{E}_k\}$. Why? In particular each X_k is \mathcal{F}_k -measurable.

To prove the martingale property, note that $\mathbb{P}X_kE = \mu E$ for each E in \mathcal{E}_k (the $\mathbb{P}E$ factors cancel). This equality extends to each Fin \mathcal{F}_k by summing over all the \mathcal{E}_k 'atoms' in F. That is, $\mathbb{P}X_kF = \mu F$ for each $F \in \mathcal{F}_k$.

Remark. In fact $X_k = d\mu_k/d\mathbb{P}_k$ where the subscripts denote restriction of the measures to the sigma-field \mathfrak{F}_k

As $\mathfrak{F}_k \subseteq \mathfrak{F}_{k+1}$ we also have

 $\mathbb{P}X_k F = \mu F = \mathbb{P}X_{k+1}F \qquad \text{for each } F \text{ in } \mathcal{F}_k,$

which is the desired martingale property. (Why is it enough to check that $\mathbb{P}_{\mathcal{F}_s} X_t = X_s$ almost surely only for the case t = s + 1?)

By construction, $0 \leq X_k \leq 1$. The convergence theorem for nonnegative supermartingales gives $X_n \to X$ almost surely for some \mathcal{F}_{∞} measurable X. By Dominated Convergence we also have $\mathbb{P}|X_n - X| \to 0$.

For each F in $\mathbb{D} = \bigcup_k \mathcal{F}_k$ there exists a k for which $F \in \mathcal{F}_k$. For $n \ge k$ we have $\mu F = \mathbb{P}X_k F = \mathbb{P}X_n F$ so that

$$|\mu F - \mathbb{P}XF| = |\mathbb{P}X_nF - \mathbb{P}XF| \le \mathbb{P}|X_n - X| \to 0.$$

It follows that $\mu F = \mathbb{P}XF$ for each F in \mathbb{D} . A generating class argument using the fact that \mathbb{D} is a field that generates $\mathbb{B}(0,1]$ extends the equality to each F in $\mathbb{B}(0,1]$. That is, μ has density X with respect to \mathbb{P} .