
Statistics 330/600, springl 2017
Homework #10 solutions

*[1] Suppose {Fn : n ∈ N0} is a filtration defined on a probability space (Ω,F,P)
and {Xn : n ∈ N0} is a sequence of real-valued random variables adapted to
that filtration. Suppose also that σ, σ1, and σ2 are stopping times for the
filtration. For each of the following six cases either prove that τ is a stopping
time or give an example to show that it need not be a stopping time.

(i) τ = inf{i ≥ σ : Xi ∈ B} for a given Borel set B

Solution: For each n ∈ N0,

{τ(ω) ≤ n} = ∪nj=0 ∪ni=j {σ(ω) = j, Xi(ω) ∈ B}.

Check that {σ = j, Xi ∈ B} ∈ Fi ⊆ Fn.

(ii) τ = σ1 ∧ σ2 (minimum) or τ = σ1 ∨ σ2 (maximum)

(iii) τ = σ + 3 or τ = (σ − 3)+

(iv) τ = argmaxi{Xi : 1 ≤ i ≤ k}.

Solution: Interpret the argmax as the first i for which Xi(ω) =
M(ω) = max1≤j≤kXj(ω). Then

{ω : τ(ω) ≤ 1} = {ω : X1(ω) = M(ω)} = {ω : X1(ω) ≥ max2≤j≤kXj(ω)}.

You needed to create an example where this set is not F1-measurable.
For example, suppose Ω = {−1, 1}k with ξi(ω) being the ith coordinate
and Fi = σ{ξ1, . . . , ξi}. If Xi(ω) = iξi(ω) then

{τ(ω) ≤ 1} = {ω : max2≤j ξj(ω) = −1} /∈ F1.

Of course it would suffice to take k equal to 2 for the purposes of a
counterexample.

*[2] Suppose Ω = (0, 1] and P equals Lebesgue measure restricted to B(0, 1]. Sup-
pose also that µ is another measure on B(0, 1] for which µB ≤ PB for each
B ∈ B(0, 1]. Define Ei,k =

(
(i − 1)/2k, i/2k

]
and Ek = {Ei,k : 1 ≤ i ≤ 2k}

and E = ∪k∈N0Ek. Define Fn = σ(En) and

Xk(ω) =
∑

E∈Ek

{ω ∈ E}µE
PE

.

Show that {(Xn,Fn) : n ∈ N0} is a martingale. Deduce that Xn converges
both almost surely and in L1 to a random variable X for which µB = P(XB)
for each B ∈ B(0, 1].



Solution: It was easy to get involved in a lot of unnecessary
notation with this problem. The idea was to explain how Radon-
Nikodym can be proved using martingales, at least in this simple case.

It helps to first note that each member of Fk is either the empty
set or the union of finitely many members of Ek. The fact that each E
in Ek is a union of two sets in Ek+1 implies that Fk ⊆ Fk+1. That
is, we have a filtration.

You should check that B(0, 1] = F∞ = σ (D) where D = ∪kFk.
A function f on (0, 1] is Fk-measurable if and only if it takes a

constant value on each E in Ek, that is, f(ω) =
∑

E∈Ek
{ω ∈ E}fE

for real numbers {fE : E ∈ Ek}. Why? In particular each Xk is
Fk-measurable.

To prove the martingale property, note that PXkE = µE for
each E in Ek (the PE factors cancel). This equality extends to each F
in Fk by summing over all the Ek ‘atoms’ in F . That is, PXkF = µF
for each F ∈ Fk.

Remark. In fact Xk = dµk/dPk where the subscripts denote restriction
of the measures to the sigma-field Fk

As Fk ⊆ Fk+1 we also have

PXkF = µF = PXk+1F for each F in Fk,

which is the desired martingale property. (Why is it enough to check
that PFsXt = Xs almost surely only for the case t = s+ 1?)

By construction, 0 ≤ Xk ≤ 1. The convergence theorem for non-
negative supermartingales gives Xn → X almost surely for some F∞-
measurable X. By Dominated Convergence we also have P|Xn−X| →
0.

For each F in D = ∪kFk there exists a k for which F ∈ Fk. For
n ≥ k we have µF = PXkF = PXnF so that

|µF − PXF | = |PXnF − PXF | ≤ P|Xn −X| → 0.

It follows that µF = PXF for each F in D. A generating class
argument using the fact that D is a field that generates B(0, 1] extends
the equality to each F in B(0, 1]. That is, µ has density X with respect
to P.


