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1 Definitions
S:defn

The Fourier Transform (FT) of a probability measure P on B(R) is defined
as the function

ψP (t) = P xeitx for t ∈ R.

It is always well defined because both cos(xt) and sin(xt) are bounded con-
tinuous functions of x, for each fixed t in R. Moreover, by HW12.5,

|ψP (t)| ≤ P x|eitx| = 1 for t ∈ R.

If X is a (real-valued) random variable then ψX(t) is defined to equal the
FT of the distribution of X, that is, ψX(t) = PωeitX(ω) = ψP (t) if X ∼ P .

The FT is closely related to the moment generating function, MP (t) =
P xetx = MX(T ) if X ∼ P . In class I showed, by taking the pointwise limit
of the FT for (Xn − n)/

√
n with Xn ∼ Poisson(n), that

ψN(0,1)(t) = e−t
2/2 for t ∈ R.

Compare with MX(t) = PωetX(ω) = et
2/2 if X ∼ N(0, 1).

The case where P is the double exponential distribution, with density
e−|x|/2 with respect to Lebesgue measure is slightly more tricky:

MP (t) = 1
2

∫
R
e−|x|+xtdx

= 1
2

∫ 0

−∞
ex(1+t)dx+ 1

2

∫ ∞
0

e−x(1−t)dx

=

{
(1− t2)−1 if |t| < 1
+∞ otherwise

.
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§2 Properties of the FT 2

If you have studied complex analysis you might know why the direct re-
placement of t by it is justified to give ψP (t) = (1 + t2)−1 for t ∈ R.

Remark. The function L(z) := Pxezx − (1− z2) is holomorphic in the
open set G = {z ∈ C : −1 < <z < 1} and H(z) = 0 for z ∈ G ∩ R. By
the Corollary to Theorem 10.18 of Rudin (1974), the function L must
be zero throughout G.

Even trickier is the case where X has a Cauchy distribution, with density
π−1(1 + x2)−1 with respect to Lebesgue measure.

MX(t) =

{
1 if t = 0
+∞ if t ∈ R\{0}

whereas (Problem [1]) ψX(t) = e−|t| for all t in R.

2 Properties of the FT
S:properties

The following facts account for the usefulness of the FT for things like the
proof of Central Limit Theorems.

moments (i) If X is a random variable with P|X|k <∞ for some k ∈ N then

ψX(t) = 1 + (it)PX +
(it)2

2!
P(X2) + · · ·+ (it)k

k!
P(X2) + o(|t|k)

near t = 0.

unique (ii) A probability measure P is uniquely determined by its FT.

inversion (iii) If
∫
R |ψP (t)| dt < ∞ then P has a bounded, uniformly continuous

density,

p(x) =
1

2π

∫
R
e−itxψP (t) dt ,

with respect to Lebesgue measure.

cid (iv) For probability measures P, P1, P2, . . . , if ψPn(t) → ψP (t) as n → ∞
for each t ∈ R then Pn  P .

Fact (i) comes from a Taylor expansion of eixt to a polynomial of degree k
plus a remainder that is bounded in modulus by a constant multiple of |xt|k∧
|xt|k+1, followed by a Dominated Convergence argument.

The other three facts all follow from a strange equality derived using
several appeals to Fubini plus invariance arguments for Lebesgue measure.

It turns out to be most convenient to work with the vector space of real-
valued function F := BL(R) ∩ L1(R,B(R), λ), where λ denotes Lebesgue
measure. This space has the following properties:
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§3 A strange identity 3

(a) F generates B(R)

(b) A probability measure P on B(R) is uniquely determined by the values
{Pf : f ∈ F}.

(c) For probability measures P, P1, P2, . . . , if Pnf → Pf for each f ∈ F
as n→∞ then Pn  P .

See Problem [3].

3 A strange identity
S:mu.Q

The identity comes from the fact that there exists a probability measure Q
on B(R) for which ψQ(t) ≥ 0 for each t ∈ R and C

∫
R ψQ(t) dt = 1 for some

constant C. We can then define another probability measure µ on B(R) by
using the density CψQ(t) with respect to Lebesgue measure λ.

For example we could use Q = N(0, 1) with C = (2π)−1/2 and µ =
N(0, 1). In my opinion, the dual role of the N(0, 1) slightly conceals what
is happening. Accordingly, I’ll start with a generic pair Q and µ then only
impose normality when we come to a bunch of Dominated Convergence
arguments. You might find it informative to repeat the argument with Q as
the double exponential and µ as the Cauchy.

Let f be a function in L1(R,B(R), λ) with ‖f‖1 = λ(f). Suppose X ∼ P
independently of Y ∼ µ. The joint distribution of (X,Y ) is then P⊗µ. Thus

(?) = Pf(X + Y ) = P xµtf(x+ t)

= P xλtCψQ(t)f(x+ t) definition of µ

= CP xλt
(
Qyeiytf(x+ t)

)
By the (analog for three measures of the) Tonelli theorem, the function
(x, y, t) 7→ eiytf(x+ y) is integrable:

P xλtQy|eiytf(x+ t)| ≤ P xQy
∫
R
|f(x+ t)| dt = ‖f‖1 <∞.

Fubini now lets me rearrange the order of integration to get

(?) = CQyP x
∫
R
eiytf(x+ t) dt

= CQyP x
∫
R
eiy(w−x)f(w) dw

= CQy
∫
R
eiyw

(
P xe−iyx

)
f(w) dw

=

∫
R
Qy
[
CeiywψP (−y)

]
f(w) dw.
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§4 Proofs of Facts (ii), (iii), and (iv) 4

Actually this is not quite the identity I need. I wrote it that way to
make the role of Fubini and invariance of Lebesgue measure clearer. I really
need to insert a small positive constant σ to get

Pf(X + σY ) =

∫
R
Hσ(w)f(w) dw

where Hσ(w) = Qy
[
Ceiyw/σψP (−y/σ)/σ

]
mu.QQ.sigmu.QQ.sig <1>

Remark. You could also get the last equality by changing Q to Qσ,
the image of Q under the map y 7→ y/σ. For example, if Q = N(0, 1)
then Qσ = N(0, 1/σ2) and the corresponding µσ is the N(0, σ2).

The function Hσ(w) is bounded because

|Hσ(w)| ≤ Qy|Ceiyw/σψP (−iy/σ)/σ| ≤ C/σ.

In fact (Problem [2]), Hσ must be real-valued with 0 ≤ Hσ ≤ C/σ and the
distribution of X + σY has density Hσ with respect to Lebesgue measure.

Now let me specialize to the case Q = µ = N(0, 1) and let me write γσ
for the distribution of X + σY . Then

identityidentity <2> Pf(X + σY ) = γσf =

∫
R
Hσ(w)f(w) dw for all f ∈ L1(λ)

where

H.sigH.sig <3> Hσ(w) =
1

2πσ

∫
R
e−y

2/2+iyw/σψP (−y/σ) dy =
1

2π

∫
R
e−σ

2t2/2−iytψP (t) dt.

Remember that

H.sig.bndH.sig.bnd <4> 0 ≤ Hσ(w) ≤ 1

2π

∫
R
e−σ

2t2/2|ψP (t)| dt ≤ 1

2π

∫
R
e−σ

2t2/2 dt =
1

σ
√

2π
.

4 Proofs of Facts (ii), (iii), and (iv)
S:proofs

Specialize equality <2> to f in F.
Fact (ii): A probability measure P is uniquely determined by its FT.

Proof The FT ψP uniquely determines Hσ for each σ > 0, which uniquely
determines Pf(X + σY ). Let σ tend to zero, invoking Dominated Conver-
gence to see that Pf(X) = Pf is uniquely determined in the limit. Use
property (b).

�
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§4 Proofs of Facts (ii), (iii), and (iv) 5

Fact (iii): If
∫
R |ψP (t)| dt <∞ then P has a bounded, uniformly contin-

uous density,

p(x) =
1

2π

∫
R
e−itxψP (t) dt ,

with respect to Lebesgue measure.

Proof Use the first inequality in <4> to see that the Hσ in <2> stays
bounded as as σ → 0:

0 ≤ Hσ(w) ≤ 1

2π

∫
R
e−σ

2t2/2|ψP (t)| dt ≤ 1

2π

∫
R
|ψP (t)| dt <∞.

Moreover, by Dominated Convergence (with a multiple of |ψP | as the dom-
inating function),

Hσ(w)→ H(w) :=
1

2π

∫
R
e−iytψP (t) dt.

Again by Dominated Convergence (with a multiple of |f | as the dominating
function) and the fact that f ∈ F,

Pf(X) = lim
σ→0

Pf(x+ σy) =

∫
R
H(w)f(w) dw.

Invoke (b).

�

Fact (iv): For probability measures P, P1, P2, . . . , if ψPn(t) → ψP (t) as
n→∞ for each t ∈ R then Pn  P .

Proof Suppose Xn ∼ Pn independently of Y ∼ N(0, 1). From the analog
of <2> and <5> with X replaced by Xn,

Pf(Xn + σY ) = γσf =

∫
R
Hσ,n(w)f(w) dw for all f ∈ L1(λ)

where

H.sigH.sig <5> Hσ,n(w) =
1

2π

∫
R
e−σ

2t2/2−iytψPn(t) dt.

Let n tend to infinity with σ fixed, invoking Dominated Convergence (with
a multiple of exp(−σ2w2/2) as the dominating function) using the fact that
ψPn(t)→ ψP (t) for each real t, to deduce that

Hσ,n(w)→ Hσ(w) as n→∞.
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Then invoke Dominated Convergence (with a multiple of |f | as the domi-
nating function) to deduce that

Pf(Xn + σY )→
∫
R
Hσ(w)f(w) dw = Pf(X + σY ) as n→∞.

Approximate.

|Pf(Xn)− Pf(X)| ≤ P|f(Xn)− f(Xn + σY )|
+ |Pf(Xn + σY )− Pf(X + σY )|
+ P|f(X + σY )− f(X)|

Let n tend to infinity then use the Bounded Lipschitz property for f to
deduce that

lim sup
n→∞

|Pf(Xn)− Pf(X)| ≤ 2 ‖f‖BL P (2 ∧ (σ|Y |)) .

Let σ tend to zero then invoke (c) to complete the proof.

�

5 Problems
S:problems

[1] Use the inversion fact (iii) from Section 2 together with the FT of the doubleP:Cauchy

exponential distribution to show that the Cauchy distribution has FT equal
to e−|t|.

[2] Suppose γ is a probability measure on B(R) and H is a complex-valued,P:density

measurable function on R for which D := supx |H(x)| <∞ and

γf =

∫
R
H(w)f(w) dw for each f ∈ L1(R,B(R), λ).

Show that H must be real-valued with 0 ≤ H(x) ≤ D, so that γ has
density H with respect to Lebesgue measure. Hint: Let h1 = <H and
h2 = =H, so that H(w) = h1(w) + ih2(w). Show that

0 ≤ <γ{h1 < 0} = <
∫
R
h1(w){h1(w) < 0} dw ≤ 0.

Argue similarly to show that h2 = 0.

[3] Prove properties (a), (b), and (c) for F := BL(R) ∩ L1(R,B(R), λ). ForP:FF

each M ∈ N define

JM (x) := 1 ∧ (M + 1− |x|)+ for M ∈ N.
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(i) The function JM belongs to F and hJM ∈ F for each h ∈ BL(R).

(ii) Show that each bounded interval [u, v] can be written a decreasing limit of
a sequence of F functions. Deduce that F generates B(R).

(iii) Show that P (hJM )→ Ph as M →∞ for each h ∈ BL(R).

(iv) For (c) show that

Pn(hJM )→ P (hJM ) for each h ∈ BL(R) and each M

1− PnJM → 1− PJM .

Deduce that

lim sup
n→∞

|Pnf − Pf | ≤ 2 ‖h‖BL P (1− JM ).
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