Fourier transforms

1 Definitions . . . . . . . . . .. 1

2 Properties of the FT . . . . . .. .. ... ... .. ...... 2

3 A strange identity . . . ... .o 3

4 Proofs of Facts (ii), (iii), and (iv) . . . . . . .. ... ... .. 4

) Problems . . . ... ... 6
Definitions

The Fourier Transform (FT) of a probability measure P on B(R) is defined
as the function

Yp(t) = P%e™  for t € R.
It is always well defined because both cos(xt) and sin(zt) are bounded con-
tinuous functions of z, for each fixed ¢ in R. Moreover, by HW12.5,

lWp(t)| < P*le™| =1  fort€R.

If X is a (real-valued) random variable then ¢ x (¢) is defined to equal the
FT of the distribution of X, that is, ¢x (t) = P*e®X @) = ¢p(t) if X ~ P.

The FT is closely related to the moment generating function, Mp(t) =
Prel® = My (T) if X ~ P. In class I showed, by taking the pointwise limit
of the FT for (X,, — n)/y/n with X,, ~ Poisson(n), that

wN(o,l)(t) = e t/2 for t € R.

Compare with My () = P¥etX®) = ¢*/2 if X ~ N(0,1).
The case where P is the double exponential distribution, with density
e~ 171 /2 with respect to Lebesgue measure is slightly more tricky:

Mp(t) = %/ o lzltat g
R

0 )
= %/ e"”(1+t)d:r+%/ e O

—00 0
_Ja=-&)t ifj <1
~+00 otherwise -
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2 Properties of the FT 2
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If you have studied complex analysis you might know why the direct re-
placement of ¢ by it is justified to give ¥p(t) = (1 +t2)~! for t € R.

Remark. The function L(z) := P*e** — (1 — 22) is holomorphic in the
open set G={z€C:—-1<RNz< 1} and H(z) =0 for z € GNR. By
the Corollary to Theorem 10.18 of Rudin (1974), the function L must
be zero throughout G.

Even trickier is the case where X has a Cauchy distribution, with density
7711 + 22)~! with respect to Lebesgue measure.

1 ift=0
Mx(t) = {+oo if t € R\{0}

whereas (Problem [1]) ¢x (t) = e~I*l for all ¢ in R.

Properties of the FT

The following facts account for the usefulness of the FT for things like the
proof of Central Limit Theorems.

(i) If X is a random variable with P|X|* < oo for some k € N then

Yx(t) =1+ (it)PX + “;32]?()(2) o+ (igkp(x?) + o(|t[F)

near t = 0.
(ii) A probability measure P is uniquely determined by its FT.

(iii) If [ [¢¥p(t)]dt < oo then P has a bounded, uniformly continuous
density,

p(x) = 217T/Re_m¢1p(t) dt,

with respect to Lebesgue measure.

(iv) For probability measures P, Py, P, ..., if ¥p, (t) — ¥p(t) as n — oo
for each t € R then P, ~ P.

Fact (i) comes from a Taylor expansion of e to a polynomial of degree k
plus a remainder that is bounded in modulus by a constant multiple of |xt[¥ A
|lzt|*+1, followed by a Dominated Convergence argument.

The other three facts all follow from a strange equality derived using
several appeals to Fubini plus invariance arguments for Lebesgue measure.

It turns out to be most convenient to work with the vector space of real-
valued function F := BL(R) N £!(R, B(R), \), where A\ denotes Lebesgue
measure. This space has the following properties:
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83 A strange identity 3

(a) F generates B(R)

(b) A probability measure P on B(R) is uniquely determined by the values
{Pf:felF}

(c¢) For probability measures P, P, Ps, ..., if P,f — Pf for each f € F
as n — oo then P, ~ P.

See Problem [3].

A strange identity

The identity comes from the fact that there exists a probability measure @)
on B(R) for which ¢q(t) > 0 for each t € R and C [ 9o(t) dt = 1 for some
constant C. We can then define another probability measure p on B(R) by
using the density Cg(t) with respect to Lebesgue measure A.

For example we could use Q@ = N(0,1) with C = (27)"%/? and pu =
N(0,1). In my opinion, the dual role of the N(0,1) slightly conceals what
is happening. Accordingly, I'll start with a generic pair @) and g then only
impose normality when we come to a bunch of Dominated Convergence
arguments. You might find it informative to repeat the argument with @) as
the double exponential and p as the Cauchy.

Let f be a function in £(R, B(R), A) with ||f||; = A(f). Suppose X ~ P
independently of Y ~ p. The joint distribution of (X,Y) is then P®pu. Thus

(*) =Pf(X+Y)=Puf(z +1)
= PN Cyq(t) f(z +t) definition of
= CP"\ (QUe' f(z +1))

By the (analog for three measures of the) Tonelli theorem, the function
(z,y,t) — e f(x +y) is integrable:

PINQIE (o +0)] < PPQ [ |f(a + 0]t = 1], < .
R
Fubini now lets me rearrange the order of integration to get

(x) = CQYP” / eV f(x +t)dt
R
= CQny/ W) £ (w) dw
R
= CQy/ eV (Pe™ ™) f(w) dw
R

- /R QY [Cepp(—y)] f(w) dw.
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Actually this is not quite the identity I need. I wrote it that way to
make the role of Fubini and invariance of Lebesgue measure clearer. I really
need to insert a small positive constant o to get

Pf(X +0oY)= /RHU(w)f(w) dw
where H,(w) = QY [Ceiyw/awp(—y/a)/a}

Remark. You could also get the last equality by changing @ to @,
the image of @ under the map y — y/o. For example, if Q = N(0,1)
then Q, = N(0,1/0?) and the corresponding i, is the N(0,0?).

The function H,(w) is bounded because
|Ho(w)| < QY|C™™/p(—iy/a) /o] < C/o.

In fact (Problem [2]), H, must be real-valued with 0 < H, < C'/o and the
distribution of X + oY has density H, with respect to Lebesgue measure.

Now let me specialize to the case Q@ = = N(0,1) and let me write 7,
for the distribution of X + Y. Then

Pf(X 4+0oY)=n,f= /RHU(w)f(w) dw for all f € L1())

where

1 » 1 ;
Hy(w) = 5 | eV loyp(—y /o) dy = / e Ty p (1) d.
T JRr

- 2o Jr
Remember that

1
oV 2 )

1 2,2 1 2,2
0< Hy(w)< — [ e 2|p(t dt</ 2 gt =
< How) < o [ e Plplde< - [ o

Proofs of Facts (ii), (iii), and (iv)

Specialize equality <2> to f in F.
Fact (ii): A probability measure P is uniquely determined by its FT.

PrRoOOF The FT 1 p uniquely determines H, for each o > 0, which uniquely
determines Pf(X + oY). Let o tend to zero, invoking Dominated Conver-
gence to see that Pf(X) = Pf is uniquely determined in the limit. Use

property (b).
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Fact (iii): If [g |¢p(t)|dt < oo then P has a bounded, uniformly contin-
uous density,

1 /R e M p(t) dt,

p(z) = 5

with respect to Lebesgue measure.

PrOOF Use the first inequality in <4> to see that the H, in <2> stays
bounded as as ¢ — 0:

1 1
0 < Hy(w) < / e~ 2|y p(8)] dt < / p (1) di < oo,
2w R 27 R
Moreover, by Dominated Convergence (with a multiple of |¢p| as the dom-

inating function),

1 .
= — —yt t) dt.
2T /Re ¢P( )

Again by Dominated Convergence (with a multiple of |f| as the dominating
function) and the fact that f € F,

H,(w) — H(w) :

PACY) = limPf(o + o) = [ H(w)f(w)du,

Invoke (b).

Fact (iv): For probability measures P, Py, Py, ..., if ¥p, (t) — ¥p(t) as
n — oo for each t € R then P, ~» P.

PROOF Suppose X,, ~ P, independently of Y ~ N(0,1). From the analog
of <2> and <5> with X replaced by X,,

Pf( X, +0Y)=",f= /RH(m(w)f(w) dw for all f € L1())

where

1
o7

Heyp(w) /]R e~ 2ty (1) dt.

Let n tend to infinity with o fixed, invoking Dominated Convergence (with
a multiple of exp(—o2w?/2) as the dominating function) using the fact that
Yp, (t) = ¥p(t) for each real t, to deduce that

Hyp(w) = Hy(w) as n — oo.
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Then invoke Dominated Convergence (with a multiple of |f| as the domi-
nating function) to deduce that

IP’f(Xn—i—aY)%/Hg(w)f(w)dw—IP’f(X—i—aY) as n — oo.
R

Approximate.

‘]P)f(Xn> _]P)f(XN < P‘f(Xn) - f(Xn “FUY)‘
+|Pf(X,+0Y)—Pf(X +0Y)|
+PIf(X + oY) = f(X)]

Let n tend to infinity then use the Bounded Lipschitz property for f to
deduce that

limsup [P (X,,) — Bf(X)| < 2| fllp, B (2 A (o]Y])).

n—oo

Let o tend to zero then invoke (c) to complete the proof.

Problems

Use the inversion fact (iii) from Section 2 together with the FT of the double
exponential distribution to show that the Cauchy distribution has FT equal
to eI,

Suppose 7 is a probability measure on B(R) and H is a complex-valued,
measurable function on R for which D := sup, |H(x)| < oo and

~f = /RH(w)f(w) dw for each f € L1(R, B(R), \).

Show that H must be real-valued with 0 < H(x) < D, so that v has
density H with respect to Lebesgue measure. Hint: Let hy = RH and
he = SH, so that H(w) = hi(w) + the(w). Show that

0 < Ry{h1 <0} = %/Rin(w){hl(w) < 0}dw <0.

Argue similarly to show that he = 0.

Prove properties (a), (b), and (c) for F := BL(R) N £!(R, B(R), ). For
each M € N define

Ju(z) =1AM+1—|z))" for M e N.
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(i) The function Jys belongs to F and hJy; € F for each h € BL(R).

(ii) Show that each bounded interval [u,v] can be written a decreasing limit of
a sequence of F functions. Deduce that F generates B(R).

(iii) Show that P(hJy) — Ph as M — oo for each h € BL(R).
(iv) For (c) show that

P, (hJpr) — P(hJur) for each h € BL(R) and each M
1_PnJM — 1—PJM

Deduce that

limsup |Pof — Pf| <2 |[Bllgy, P(L = Ju).
n—oo
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