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1 Orthogonal projections in L2

For a measure space (X,A, µ), the set L2 = L2(X,A, µ) of all square inte-
grable, A\B(R)-measurable real functions on X would be a Hilbert space
if we worked with equivalence classes of functions that differ only on µ-
negligible sets. The corresponding set L2(X,A, µ) can be identified as a true
Hilbert space.

Lazy probabilists (like me) often ignore the distinction between L2 and L2,

referring to ‖f‖2 =
(
µ(f2)

)1/2
as a norm on L2 (rather than using the more

precise term ‘semi-norm’) and

〈f, g〉 = µ(fg) for f, g ∈ L2(X,A, µ)

as an inner product. It is true that 〈f, g〉 is linear in f for fixed g and
linear in g for fixed f ; and it is true that ‖f‖22 = 〈f, f〉; but we can only
deduce that f(x) = 0 a.e.[µ] if ‖f‖2 = 0. The inner product satisfies the
Cauchy-Schwarz inequality:

<1> |〈f, g〉| ≤ ‖f2‖ ‖g‖2 for f, g ∈ L2(X,A, µ),

version: 19 March 2018
printed: 21 March 2018

L2 stuff
c©David Pollard



§1 Orthogonal projections in L2 2

which is actually just a special case of the Hölder inequality.

Remark. For a surprising range of application of the humble C-S
inequality see the surprising little book by Steele (2004).

As shown by HW3.1, the space L2 is also complete: for each Cauchy
sequence {hn : n ∈ N} in L2 there exists an h in L2 (unique only up to
µ-equivalence) for which ‖hn − h‖2 → 0.

A subset H0 of L2 is said to be closed if it contains all its limit points:
if f in L2 with ‖hn − f‖2 → 0 for a sequence {hn} in H0 then f ∈ H0.
Equivalently, [f ] ⊂ H0, where

[f ] := {g ∈ L2(X,A, µ) : f = g a.e.[µ]}.

<2> Example. A linear map τ : L2(X,A, µ)→ R (also known as a linear func-
tional) is said to be continuous if there exists a finite constant C for which

|τ(h)| ≤ C ‖h‖2 for all h ∈ L2(X,A, µ).

The set H0 = {h ∈ L2 : τ(h) = 0} is a closed subset of L2: if ‖hn − f‖2 → 0
for a sequence {hn} in H0 then

|τ(hn)− τ(f)| = |τ(hn − f)| ≤ C ‖hn − f‖2 → 0,

which implies τ(f) = 0.
�

It is often enough to have just [f ] ∩ H0 6= ∅. To avoid some tedious
qualifications about negligible sets I will say that a subset H0 of L2(X,A, µ)
is effectively closed if: for each f in L2 with ‖hn − f‖2 → 0 for a se-
quence {hn} in H0 there exists an h in H0 for which h(x) = f(x) a.e.[µ].

Remark. The usual fix of working with L2(X,A, µ) gets a bit dangerous
when several different measures or sigma-fieldss are involved.

<3> Example. Suppose G is a sub-sigma-field of A. You know that H0 :=
L2(X,G, µ) is complete. You can also think of H0 as a subspace of L2 =
L2(X,A, µ). It is essentially closed.

If ‖gn − f‖2 → 0 for a sequence {gn} in H0 and f ∈ L2 then

‖gn − gm‖2 ≤ ‖gn − f‖2 + ‖gm − f‖2 ,

which is less than any given ε > 0 if min(m,n) is large enough. That is, {gn}
is a Cauchy sequence in H0. By completeness of L2(X,G, µ) there exists an h
in H0 for which ‖hn − h‖ → 0. It follows that ‖f − h‖2 = 0, so that h = f
a.e.[µ].

�
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§1 Orthogonal projections in L2 3

The following result underlies the existence of both Radon-Nikodym
derivatives (densities) for measures and Kolmogorov conditional expecta-
tions.

<4> Theorem. Suppose H0 is an essentially closed subspace of L2(X,A, µ). For
each f ∈ L2 there exists an f0 in H0 for which:

(i) ‖f − f0‖2 = δ := inf{‖f − h‖2 : h ∈ H0};

(ii) 〈f − f0, h〉 = 0 for every h in H0;

(iii) f0 is uniquely determined up to µ-equivalence;

(iv) ‖f‖22 = ‖f0‖22 + ‖f − f0‖22.

Proof The argument uses completeness of L2 and the identity

<5> ‖a+ b‖22 + ‖a− b‖22 = 2 ‖a‖22 + ‖b‖22 for all a, b ∈ L2,

an equality that results from expanding 〈a + b, a + b〉 + 〈a − b, a − b〉 then
cancelling out 〈a, b〉 terms.

By definition of the infimum, for each n ∈ N there exists an hn ∈ H0 for
which

‖f − hn‖2 ≤ δn := δ + n−1.

Invoke equality <5> with a = f − hn and b = f − hm:

4 ‖f − (hn + hm)/2‖22 + ‖hn − hm‖22 = 2 ‖f − hn‖22 + 2 ‖f − hm‖22 .

The first term on the left-hand side is ≥ 4δ2 because (hn+hm)/2 ∈ H. Thus

‖hn − hm‖22 ≤ 2δ2n + 2δ2m − 4δ2 → 0 as min(m,n)→∞.

That is {hn} is a Cauchy sequence, which converges in norm to an f0 in L2.
We may assume that f0 ∈ H because H0 is essentially closed,

Equality (i) follows from

δ ≤ ‖f − f0‖2 ≤ ‖f − hn‖2 + ‖hn − f0‖2 → δ as n→∞.

For (ii) note, for each h ∈ H, that the quadratic

‖f − (f0 + th)‖2 = ‖f − f0‖2 − 2t〈f − f0, h〉+ t2 ‖h‖22

L2 stuff ./ Draft: 19 March 2018 c©David Pollard



§2 Continuous linear functionals 4

achieves its minimum value δ2 at t = 0, which forces the coefficient of t to
equal zero.

For (iii) suppose f0, f1 ∈ H and both f − f0 and f − f1 are orthogonal
to each h in H. Then the difference f0 − f1 must be orthogonal to itself,
that is ‖f0 − f1‖22 = 0, forcing f0 = f1 a.e.[µ].

Equality (iv) follows from the fact that 〈f − f0, f0〉 = 0.

�

The function f0, which is unique only up to µ-equivalence, is called an
(orthogonal) projection of f onto H0. For each f , by arbitrarily picking one
member from [f0] ∩ H0 as the projection of f we get a map π0 from L2

into H0 whose behavior involves many almost everywhere exceptions. For
example, suppose f and g are functions in L2 with π0(f) = f0 and π0(g) =
g0. for i = 1, 2. For constants c and d, part (iii) of the Theorem gives

c〈f − f0, h〉 = 0 = d〈g − g0, h〉 for all h in H0.

Linearity of the inner product in its first argument gives

〈c(f − f0) + d(g − g0), h〉 = 0 for all h in H0.

That is, cf0 + dg0 satisfies the equalities that define π0(cf + dg) up to a
µ-equivalence, which implies

<6> π0(cf + dg) = cπ0(f) + dπ0(g) a.e.[µ].

This result is as close to linearity as we can hope to get for a map that is
only defined up to a µ-equivalence.

2 Continuous linear functionals

Suppose τ : L2(X,A, µ) → R is a continuous linear functional, in the sense
of Example <2>. From that Example you know that the linear subspace
H0 = {h ∈ L2 : τ(h) = 0} is closed as a subset of L2.

To avoid trivialities, suppose there exists an f in L2 for which τ(f) 6= 0.
Without loss of generality we may assume τ(f) = 1.

By Theorem <4>, there exists an f0 in H0 for which 〈h, f − f0〉 = 0
for all h in H0. Define g0 = f − f0. The construction ensures that τ(g0) =
τ(f)− τ(f0) = 1. By continuity, 1 ≤ C ‖g0‖2, which implies that ‖g0‖2 6= 0.
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§3 Conditioning heuristics 5

If h ∈ L2 with τ(h) = d then h − dg0 ∈ H, because τ(h − dg0) = 0.
The equality 〈h − dg0, g0〉 = 0 rearranges to 〈h, g0〉 = d ‖g0‖22. If we define
k := g0/ ‖g0‖22 then

<7> τ(h) = 〈h, k〉 for all h in L2.

The L2 function k for which <7> holds is unique up to a µ-equivalence.
For if k1 is another L2 function with τ(h) = 〈h, k1〉 for all h ∈ L2 then

0 = τ(h)− τ(h) = 〈h, k〉 − 〈h, k1〉 = 〈h, k − k1〉 for all h in L2.

The choice h = k − k1 shows that ‖k − k1‖22 = 0, so that k1 = k a.e.[µ].

3 Conditioning heuristics

Recall the conditioning problem. We have probability spaces (X,A,P) and
(Y,B,Q) and an A\B-measurable map T from X into Y whose distribution
under P is Q. That is

Qg = Pg(Tx) at least for g ∈M+(Y,B).

We seek a Markov kernel K = {Ky : y ∈ Y}—a family of probability mea-
sures on A for which y 7→ KyA is B-measurable for each A ∈ A—for which

<8> Pf(x) = QyKx
y f(x) for each f ∈M+(X,A)

and

<9> Ky{x : Tx 6= y} = 0 a.e.[Q].

Let me show you how this conditioning problem is related to the results
from Section 2.

To simplify notation, write 〈·, ·〉Q and ‖·‖Q for the L2(Q) := L2(Y,B,Q)

inner product and norm, with a similar convention for L2(P) := L2(X,A,P).
It is particularly informative to consider functions of the form f(x) =

g(Tx)h(x), with g ∈ L2(Q) and h ∈ L2(P). By Cauchy-Schwarz,

(P|g(Tx)h(x)|)2 ≤
(
Pg(Tx)2

) (
Ph(x)2

)
= ‖g‖2Q ‖h‖

2
P <∞.

That is, f ∈ L1(P). For each fixed h in L2(P), the linear functional τh that
maps g to Pg(Tx)h(x) is well defined. Again by Cauchy-Schwarz we have

|τh(g)| ≤ ‖g‖Q ‖h‖P ,

L2 stuff ./ Draft: 19 March 2018 c©David Pollard



§3 Conditioning heuristics 6

which shows τh is continuous. The argument in Section 2 provides a func-
tion H in L2(Q), which is unique up to Q-equivalence, such that

<10> τh(g) = 〈g,H〉Q for all g ∈ L2(Q).

Now suppose a Markov kernel K satisfying equalities <8> and <9>
exists. We can extend <8> to functions f in L1(X,A, µ) by subtraction of
the equalities for f+ and f−.

Remark. The equality P|f | = QyKx
y |f(x)| implies that Kx

y |f(x)| <∞
a.e.[Q]. We could possibly have Kyf

+ = Kyf
− =∞ for a Q-negligible

set of y’s, a situation analogous to the one studied in HW7.1. A similar
fix is possible.

In particular

Pxg(Tx)h(x) = QyKx
y (g(Tx)h(x)) by <8>

= Qyg(y)Kx
yh(x) by <9>

= 〈g,H1〉Q where H1(y) = Kx
yh(x).

The function H1 might take infinite values, but only on a Q-negligible set:
by Cauchy-Schwarz for Ky we have H1(y)2 ≤ Kh

y (x)2 and

Q
(
H1(y)2

)
≤ QyKy

1h(x)2 = Ph2 <∞.

With only Q-negligible guilt I declare H1 to be a candidate for the repre-
sentation <10> of τh.

Let us ponder. You know, for each fixed h in L2(P), that there always
exists an H (unique up to Q-equivalence) in L2(Q) for which

<11> Pg(Tx)h(x) = Qg(y)H(y) for all g in L2(Q).

You also know that, if conditional distributions exist, we can takeH asKy(h),
or perhaps (Kyh)1{y ∈ Y : Q(Kyh

2 < ∞} if you worry about the infini-
ties. Put another way P(h | Y = y) = H(y) a.e.[Q], where P(· | Y = y) is
tradition shorthand for Ky.

If you are only interested in P(h | Y = y) for a single function h (or a
countable set of h’s) in L2(P) it might appear unnecessary to worry about
existence of P(· | Y = y) as a set of probability measures on A. Instead
you could regard the conditional expected value P(h | Y = y), for a single h
in L2(P), as the value at y of function that maps L2(P) into L2(Q). Of
course you would need to extend the map to cover functions h in L1(P) if
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§4 Conditioning à la Kolmogogorov 7

you wanted a conditional expectation operator that didn’t restrict its domain
to square integrable functions.

The previous paragraph essentially describes the approach described by
Kolmogorov (1933, Chapter 5) to define a conditional expectation map,
except that he invoked the Radon-Nikodym theorem (see Section 7) to prove
existence.

4 Conditioning à la Kolmogogorov

Let me formalize the ideas introduced at the end of the previous Section.
Again assume we have probability spaces (X,A,P) and (Y,B,Q) and

an A\B-measurable map T from X into Y whose distribution under P is Q.
That is

Qg = Pg(Tx) at least for g ∈M+(Y,B).

The following details show how to construct a map κ : M+(X,A)→M+(Y,B)
with properties analogous to those for expectation with respect to a Markov
kernel. To avoid a lot of messy parentheses I’ll write κ(y, h), or κ(y, h(x)),
for the value of κ(h) at y.

<12> Theorem. There exists a map κ : M+(X,A)→M+(Y,B) for which

<13> Pg(Tx)h(x) = Qg(y)κ(y, h) for all h ∈M+(X,A) and g ∈M+(Y,B).

The map has the following properties.

(i) For each fixed h, equality <13> uniquely determines κ(y, h) up to Q-
equivalence.

(ii) K(y, 0) = 0 and K(y,1) = 1 a.e.[Q].

(iii) K(y, g1(Tx)h1(x)+g2(Tx)h2(x)) = g1(y)K(y, h1)+g2(y)K(y, h2) a.e.[Q]
for all functions gi ∈M+(Y,B) and hi ∈M+(X,A).

(iv) If h1 ≤ h2 a.e.[P] then κ(y, h1) ≤ κ(y, h2) a.e.[Q].

(v) If hn ∈ M+(X,A) and 0 ≤ hn(x) ≤ hn+1(x) ↑ h(x) as n → ∞ a.e.[P]
then κ(y, hn) ↑ κ(y, h) a.e.[Q].

We would get very similar properties if κ(y, h) = Kx
yh(x) for a Markov

kernel K satisfying <8> and <9>. Notable by its absence is an assumption
corresponding to Ky{x ∈ X : Tx 6= y} a.e.[Q]. In its place is property (iii),
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§4 Conditioning à la Kolmogogorov 8

which asserts that functions gi(Tx) behave like constants as far as κ is
concerned. On the plus side, we do not need any assumptions about beyond
the A\B-measurability.

Remark. The Theorem could be thought of as the first step towards
construction of a true Markov kernel that provides conditional distribu-
tions. The main difficulty would then be to consolidate the uncountably
many a.e.[Q] qualifications into a single Q-negligible set.

Warning: Many authors would write P(h | T = y) for my func-
tion κ(y, h), mimicking the notation for the integral with respect to a true
conditional probability distribution P(· | T = y). See Section 5 for one of
the dangers of treating the Kolmogorov conditional expectation operator as
if it had all the properties of an expectation with respect to a conditional
probability distribution.

Proof (of Theorem <12>) Homework 8 provides the tool needed for the
proof: If G1, G2 ∈M+(Y,B) have the property that

<14> QG1(y)1{y ∈ B} ≤ QG1(y)1{y ∈ B} for all B in B

then G1(y) ≤ G2(y) a.e.[Q]. In particular, if

<15> QG1(y)1{y ∈ B} = QG1(y)1{y ∈ B} for all B in B

then G1(y) = G2(y) a.e.[Q]. (Apply <14> with the roles of G1 and G2

reversed to get G1(y) ≥ G2(y) a.e.[Q].)
Back to the proof of the Theorem. The main challenge is to construct,

for each h in M+(X,A), just one function κ(y, h) for which <13> holds.
Property (i) will then follow directly from <15>.

For property (ii) the choice is easy: if h(x) = c ∈ R+ define κ(y, h) = c,
the constant function taking value c on Y. Equality <13> then reduces to
the fact that Q is the image of P under T .

To construct κ(y, h) in general, start with the analogous L2 property
given by equality <11>, namely, for each h ∈ L2(P) we have an H ∈ L2(Q)
for which

Pg(Tx)h(x) = Qg(y)H(y) for all g in L2(Q).

Write M(y, h) for the function H(y). That is, M is regarded as a map
from L2(P) into L2(Q), which is only unique up to Q-equivalence for each
fixed h.
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§4 Conditioning à la Kolmogogorov 9

To pass from <11> to a suitable choice for κ we need first to prove
an L2 analog of (iv): If h1, h2 ∈ L2(P) and 0 ≤ h1 ≤ h2 a.e.[P] then
0 ≤ M(y, h1) ≤ M(y, h2) a.e.[Q]. To this end, invoke <11> with g(y) =
1{y ∈ B} with B ∈ B.

Q1{y ∈ B}M(y, h1) = P1{Tx ∈ B}h1(x)

≤ P1{Tx ∈ B}h2(x) because h1 ≤ h2 a.e.[P]

= Q1{y ∈ B}M(y, h2).

All integrals in the last display are non-negative because h1 ≥ 0 a.e.[P]. To
get 0 ≤ M(y, h1) a.e.[Q] invoke <14> with G1 = 0 and G2(y) = M(y, h1).
To get M(y, h1) ≤ M(y, h2) a.e.[Q] invoke <14> with G1 = (y, h1) and
G2(y) = M(y, h2).

Now we have everything needed to construct κ. Suppose g ∈ M+(Y,B)
and h ∈ M+(X,A). For all m,n ∈ N the function gm(y) = min(m, g(y))
belongs to L2(Q) and the function hn(x) = min(n, h(x)) belongs to L2(P).
From <11>,

Pgm(Tx)hn(x) = Qgm(y)M(y, hn).

Define κ(y, h) = supnM(y, hn). From the previous paragraph we know that
0 ≤M(y, hn) ↑ κ(y, h) a.e.[Q]. Let n tend to∞ with m held fixed, appealing
twice to Monotone Convergence to get

Pgm(Tx)h(x) = Qgm(y)κ(y, h).

Then let m tend to ∞, with two more appeals to Monotone Convergence to
get <13>.

For property (iii), temporarily write f(x) for g1(Tx)h1(x)+g2(Tx)h2(x).
By definition, κ(y, f) is determined up to Q-equivalence by the first in the
following string of equalities. For each G ∈M+(Y,B),

QG(y)κ(y, f)

= PG(Tx)f(x)

= PG(Tx)g1(Tx)h1(x) + PG(Tx)g2(Tx)h2(x)

= QG(y)g1(y)κ(y, h1) + QG(y)g2(y)κ(y, h2)

= QG(y)H(y) where H(y) := g1(y)κ(y, h1) + g2(y)κ(y, h2).

It follows by <15> that κ(y, f) = H(y) a.e.[Q].

L2 stuff ./ Draft: 19 March 2018 c©David Pollard



§5 Dangers 10

The argument for property (iv) is essentially the same as ints L2 analog.
For each G ∈M+(Y,B),

QG(y)κ(y, h1) = PG(Tx)h1(x) ≤ PG(Tx)h2(x) = QG(y)κ(y, h2).

By <14> we have κ(y, h1) ≤ κ(y, h2) a.e.[Q].
For property (v) first note that, by property (iv),

0 ≤ κ(y, hn) ↑ H(y) := supn κ(y, hn) a.e.[Q].

Then observe that, for each g ∈M+(Y,B),

Pg(Tx)h(x) = limn→∞ Pg(Tx)hn(x) by Monotone Convergence

= limn→∞Qg(y)κ(y, hn)

= Qg(y)H(y) by Monotone Convergence,

which identifies H(y) as one possible choice for κ(y, h).

�

I leave it to you to figure out how to extend κ to functions in L1(X,A,P).
The only (minor) difficulties involve a Q-negligible set of cases where κ(y, h+)
or κ(y, h−) (or both) take the value +∞.

5 Dangers

As in Section 3, suppose (X,A,P) and (Y,B,Q) are probability spaces and T
is an A\B-measurable map from X to Y whose distribution under P equals Q.

To begin with, suppose K = {Ky : y ∈ Y} is a condition distribution in
the sense of <8> and <9>. That is, there exists a Q-negligible set N for
which Ky{Tx 6= y} = 0 for each y in N c and Ph = QyKx

yh(x) for each h
in M+(X,A).

Consider h’s of the form h(x) = f(x, Tx) with f ∈ M+(X × Y,A ⊗ B).
By the concentration property

Kx
y f(x, Tx) = Kx

y f(x, y) for each y in N c.

This assertion holds simultaneously for every such f . If we use the suggestive
notation P(· | T = y} for the probability measure Ky then the result becomes

P(f(x, Tx) | T = y) = P(f(x, y) | T = y)

for all y ∈ N c, all f ∈M+(X× Y,A⊗B).
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§5 Dangers 11

A similar assertion need not be true if conditional distributions do not ex-
ist. In that situation we need to use the Kolmogorov conditional expectation.
That is, we need to rely on existence of a map κ : M+(X,A) → M+(Y,B)
that has the properties described in Theorem <12>. Implicitly that means
we have made some choice of Kh from the Q-equivalence class of possibilities
for each h in M+(X,A). I claim it need not be true that

<16> κ(y, f(x, Tx))
?
= κ(y, f(x, y)) a.e.[Q]??.

The question marks are to make sure you do not regard the assertion as true
if you happen to refer back to it at some stage.

Remark. I am interpreting <16> (without all the question marks) as
an assertion about every map κ, from M+(X,A) into M+(Y,B), that
has property <13>.

Indeed, the map κ would interpret the f(x, y) in <16> as a function of x
that depends on some constant y. It helps to separate the two roles played
by y in <16> by writing f(x, t) or ft(x) instead of f(x, y). If we define
Ht = κ(ft) for each t ∈ Y then the equality <16> could be interpreted to
assert

κ(y, f(x, Tx))
?
= Hy(y)

for a suitably large collection of y’s.
Right away you can see that the right-hand side could cause measura-

bility trouble because we have no reason to believe Ht(y) depends on t in a
nice way. Moreover, each Ht is just one function chosen somewhat arbitrar-
ily from an equivalence class of possibilities. If Q{t} = 0 for each t in Y, we
would not violate the assumptions of Theorem<12> by redefining Ht(t) = 0
for every t. That would cause obvious problems for <16>.

A more concrete example might clarify the issues in the previous para-
graph.

<17> Example. Suppose P = N(0, I2), the standard bivariate distribution on A :=
B(R2). It has density p(x) = (2π)−1 exp(−|x|2/2) with respect to Lebesgue
measure on A. Define T (x) = |x|2/2, a suitably measurable map from X :=
R2 into Y := R+.

It is easy to show—for example, you could use the same Tonelli trick that
gave the

√
2π for the normal density—that the distribution, Q, of T under P

has density q(y) = e−y with respect to Lebesgue measure on B := B(Y).
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§6 Bringing it all back to X 12

It seems natural to define κ(h) to be the zero function on Y for each h
in M+(X,A) with h(x) = 0 a.e.[P], because then we have

Qyg(y)κ(y, h) = 0 = Pg(Tx)h(x) for each g in M+(Y,B).

Such a choice does not violate any of the assumptions of Theorem <12>.
For each t ∈ Y define f(x, t) = ft(x) = 1{Tx = t}. Note that the

set {x : Tx = t} is the circle of radius
√

2t around the origin, a set that
has zero P measure. Consequently, by the natural choice from the previous
paragraph, we have Ht := κ(ft) equal to the zero function. We also have
f(x, Tx) = 1 for every x, which forces κ(y, f(x, Tx)) = 1 a.e.[Q]. We have
an extreme violation of the assertion in <16>.

Remark. You might want to dismiss Example <17> as a trifle caused
by too cavalier a treatment of uncountably many negligible sets. It is
certainly possible to make a more careful choice of κ(ft) to rescue<16>.
Indeed, it possible to get a true conditional distribution: take Ky to be
the uniform distribution on the circle {x : Tx = y}. That is actually
the whole point. Kolmogorov conditional expectation maps allow
us to ignore P-negligible changes in each h(x) function; conditional
distributions require us to handle uncountably many negligible sets in
a clever way.

6 Bringing it all back to X

Theorem <12> treated the case of probability spaces (X,A,P) and (Y,B,Q)
and an A\B-measurable map T whose distribution under P was equal to Q.
It gave existence of a map κ : M+(X,A)→M+(Y,B) for which

Pg(Tx)h(x) = Qg(y)κ(y, h) for all h ∈M+(X,A) and g ∈M+(Y,B).

If we write H(y) for κ(y, h) then use the fact that QG(y) = PG(Tx) for
all G ∈M+(Y,B) we get

Pg(Tx) = Qg(y)H(y) = Pg(Tx)H(Tx).

The functions x 7→ g(Tx) and x 7→ H(Tx) both belongs to M+(X,B0),
where

B0 = {T−1B : B ∈ B} = σ(T ).

Define a map κ̃ : M+(X,A) → M+(X,B0) by setting κ̃(x, f) := H(Tx)
if κf = H. Then

PG(x)f(x) = PG(x)κ̃(x, f) for all G ∈M+(X,B0).
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§6 Bringing it all back to X 13

In currently popular notation, the function κ̃f (on X) would be written
as E(f | T ), which I regard as an archaic way of writing P(f | T ). The value
of P(f | T ) at x equals κ̃(x, f).

Remark. Note the difference between H(y) = κ(y, f) = P(f | T = y)
and H(Tx) = κ̃(x, f) = (P(f | T )) (x).

The M+(X,B0) function P(f | T ) can also written as P(f | B0) or PB0(f).
That is, PB0 maps M+(X,A) into M+(X,B0).

Notice that the map T seems to have disappeared from the notation,
with only the B0 as a reminder of the role that T played. That reminder
becomes totally redundant if use a cunning notational trick.

Suppose B is actually a sub-sigma-field of A, that is, B actually lives
on X. We could take Y to be X and regard T as the identity map on X,
that is, Tx = x. Then B0 would be exactly the same as B, and M+(Y,B)
would be the same as M+(X,B), and PB would be a map from M+(X,A)
into M+(X,B) for which

<18> P(fG) = P [(PBf)G] for all G ∈M+(X,B).

The function PBf is called the Kolmogorov conditional expectation of f
given the sub-sigma-field B. It inherits from Theorem <12> the following
properties.

(i) For each fixed f in M+(X,A) the equality <18> uniquely determines
PBf up to P-equivalence.

(ii) PB0 = 0 and PB1 = 1 a.e.[P].

(iii)
PPB(G1f1G2f2) = G1PBf1 + G2PBf2 a.e.[P] for all Gi ∈ M+(X,B)
and fi ∈M+(X,A).

(iv) If f1 ≤ f2 a.e.[P] then PBf1 ≤ PBf2 a.e.[P].

(v) If fn ∈ M+(X,A) and 0 ≤ f1 ≤ f2 . . . ↑ f as n → ∞ a.e.[P] then
PBfn ↑ PBf a.e.[P].

Remark. Here I am using P to denote both a measure on A and
its restriction to B. Would it help to make up a new name for the
restriction?
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<19> Example. Suppose (X,A,P) is a probability space and we have sub-sigma-
fields B2 ⊂ B1 ⊂ A. Show that

PB2 (PB1f) = PB2f a.e.[P] for each f in M+(X,A).

Define h = PB1f and k = PB2h. By definition

PG1f = PG1h for all G1 ∈M+(X,B1)

PG2h = PG2k for all G2 ∈M+(X,B2)

Replace G1 by G2 in the first equality to deduce

PG2f = PG2h = PG2k.

Thus k has the two properties that identify it as a possible value for PB2f .
Equality a.e.[P] follows.

�

7 Radon-Nikodym theorem

The simplest form of the theorem concerns two finite measures µ and ν
defined on some (X,A).

<20> Theorem. If µX < ∞ and µf ≥ νf for each f in M+(X,A) then there
exists an A-measurable function ∆ with 0 ≤ ∆(x) ≤ 1 for all x such that

νf = µ(f∆) for each f in M+(X,A).

That is, the measure ν has density ∆ with respect to the measure µ. The
function ∆ is unique up to µ-equivalence.

Proof (sketch of a proof due to von Neumann, 1940, page 127)
Write ‖·‖µ and 〈·, ·〉µ for the norm and inner product on L2 := L2(X,A, µ).

Regard ν as a linear functional on L2. By Cauchy-Schwarz, the functional
is continuous, in the sense of Example <2>:

|νf | ≤ ν|f1| ≤
√

(νf2)(ν12) ≤ ‖f‖µ
√
νX for all ∈ L2.

Section 2 tells us that there exists a function k in L2 for which

νf = 〈f, k〉µ = µ(fk) for all ∈ L2.

I’ll show that, 0 ≤ k ≤ 1 a.e.[µ].

L2 stuff ./ Draft: 19 March 2018 c©David Pollard



§7 Radon-Nikodym theorem 15

For each ε > 0,

0 ≤ ν{k ≤ −ε} = µk{k ≤ −ε} ≤ −εµ{k ≤ −ε}.

It follows that µ{k ≤ −ε} = 0 for each ε > 0 and hence µ{k < 0} = 0.
Similarly, the inequality

µ{k ≥ 1 + ε} ≥ ν{k ≥ 1 + ε} = µk{k ≥ 1 + ε} ≥ (1 + ε)µ{k ≥ 1 + ε}

implies µ{k ≥ 1+ε} = 0 for each ε > 0 and hence µ{k > 1} = 0. Define ∆ =
k1{0 ≤ k ≤ 1}. Then νf = µ(f∆) for all f ∈ L2.

For functions f in M+(X,A) we have f ∧ n ∈ L2 so that

ν(f ∧ n) = µ((f ∧ n)∆).

Let n tend to infinity, appealing twice to Monotone Convergence to deduce
that νf = µf∆).

The uniqueness a.e.[µ] of ∆ follows from the µ analog of <15>.

�

Theorem <20> has an extension to sigma-finite measures µ and ν with ν
dominated by µ, that is: for each A ∈ A, if µA = 0 then νA = 0.

Remark. Domination is sometimes expressed as “ν is absolutely
continuous with respect to µ”, which is often denoted by ν � µ. This
terminology borrows from the classical concept of absolute continuity
of a function defined on the real line (Pollard, 2001, Section 3.4). The
density ∆ is often denoted by dν/dµ and is called the Radon-Nikodym
derivative of ν with respect to µ.

<21> Theorem. If µ and ν are both sigma-finite measures with ν dominated by µ
then there exists a real-valued function ∆0 ∈M+(X,A) for which

νf = µ(f∆0) for each f in M+(X,A).

The function ∆ is unique up to µ-equivalence.

Proof (Sketch. For details see Pollard (2001, Section 3.2).)
The idea is to first treat the case where µ and ν are finite measures, with

ν � µ, by appealing to Theorem <20> with µ replaced by λ = µ+ ν. One
argues from the inequality

ν{∆ ≥ 1} = ν∆{∆ ≥ 1}+ µ∆{∆ ≥ 1}
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that µ{∆ ≥ 1} = 0, which implies ν{∆ ≥ 1} = 0. For h ∈ M+(X,A)
and n ∈ N one needs to rearrange the equality

νf = ν(f∆) + µ(f∆) for f =
(h ∧ n)1{∆ ≤ 1− n−1}

1−∆

to get νf(1−∆) = µf∆. Two appeals to Monotone Convergence then give
νh = µh∆0 with

∆0 =
∆

1−∆
1{0 ≤ ∆ < 1}.

The sigma-finite version of the Theorem is then proved by partitioning X

into a sequence of sets Xi for which νXi + µXi <∞ and applying the result
for finite ν and µ on each Xi.

�
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