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Orthogonal projections in £?

For a measure space (X,.A,u), the set £2 = £2(X, A, u) of all square inte-
grable, A\B(R)-measurable real functions on X would be a Hilbert space
if we worked with equivalence classes of functions that differ only on u-
negligible sets. The corresponding set L?(X,.A, 1) can be identified as a true
Hilbert space.

Lazy probabilists (like me) often ignore the distinction between L? and £2,

referring to || fll, = (u(f?)) /2 a5 a norm on £2 (rather than using the more
precise term ‘semi-norm’) and

(f,9) =nu(fg)  for f,ge L2(X, A, p)

as an inner product. It is true that (f,g) is linear in f for fixed g and
linear in ¢ for fixed f; and it is true that Hf||§ = (f, f); but we can only
deduce that f(z) = 0 a.e.[u] if || f||, = 0. The inner product satisfies the
Cauchy-Schwarz inequality:

(Ll < fallllgll, — for f,g € L2(X, A, ),
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1 Orthogonal projections in £2 2
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which is actually just a special case of the Holder inequality.

Remark. For a surprising range of application of the humble C-S
inequality see the surprising little book by Steele (2004).

As shown by HW3.1, the space £? is also complete: for each Cauchy
sequence {h, : n € N} in £? there exists an h in £? (unique only up to
p-equivalence) for which ||hy, — k|, — 0.

A subset 3y of £2 is said to be closed if it contains all its limit points:
if fin £2 with ||hn, — f]l; — 0 for a sequence {h,} in Hy then f € Ho.
Equivalently, [f] C Hy, where

[fl:={g€L2(X,A,p): f=g aelul}

Example. A linear map 7 : £2(X, A, 1) — R (also known as a linear func-
tional) is said to be continuous if there exists a finite constant C' for which

|T(h)| < C'h| for all h € L2(X, A, ).

The set Ho = {h € £2 : 7(h) = 0} is a closed subset of £2: if ||k, — f|l, — 0
for a sequence {h,} in Hy then

|7(hn) = 7(F)] = [T(hn = )] < Cllhn = fll = 0,
which implies 7(f) = 0.

It is often enough to have just [f] N Hy # 0. To avoid some tedious
qualifications about negligible sets I will say that a subset 3o of £2(X, A, p)
is effectively closed if: for each f in £2 with ||h, — f|l, — 0 for a se-
quence {h,} in Hy there exists an h in Hy for which h(x) = f(z) a.e.[u].

Remark. The usual fix of working with L2(X, A, i) gets a bit dangerous
when several different measures or sigma-fieldss are involved.

Example. Suppose G is a sub-sigma-field of A. You know that Hy :=
L2(X, G, i) is complete. You can also think of g as a subspace of £ =
L2(X, A, p). Tt is essentially closed.

If ||gn — fllo — O for a sequence {g,} in Ho and f € £ then

”gn - gmH2 < Hgn - f”Q + Hgm - fH27

which is less than any given € > 0 if min(m, n) is large enough. That is, {g,}
is a Cauchy sequence in Hy. By completeness of £2(X, G, i) there exists an h
in Hy for which ||k, — h|| — 0. It follows that || f — hl|, = 0, so that h = f

a.e.[u].
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The following result underlies the existence of both Radon-Nikodym
derivatives (densities) for measures and Kolmogorov conditional expecta-
tions.

Theorem. Suppose Hy is an essentially closed subspace of L*(X, A, ). For
each f € L? there exists an fo in Ho for which:

(1) IIf = folly = & := nf{[[f = hlly : h € Ho};
(ii) (f — fo,h) =0 for every h in Ho;
(iii) fo is uniquely determined up to p-equivalence;
() |1 £15 = lfollz + IIf = foll3-
PRrROOF The argument uses completeness of £2 and the identity
la +bl5 + la = blI3 = 2lall5 + b5 for all a,b € £2,

an equality that results from expanding (a + b,a + b) + (a — b,a — b) then
cancelling out (a, b) terms.

By definition of the infimum, for each n € N there exists an h,, € Hy for
which

If = Bally < 8n =0 +n7"
Invoke equality <5> with a = f — hy, and b= f — hy,:
41Lf = (o + o) /21l + I = Bl = 21Lf = Rl +2[1f = B3
The first term on the left-hand side is > 462 because (hy, +hy,)/2 € H. Thus
By = B |3 < 262 4 262, — 462 = 0 as min(m,n) — oo.

That is {h,} is a Cauchy sequence, which converges in norm to an fo in £2.
We may assume that fo € H because Hy is essentially closed,
Equality (i) follows from

6 < |If = folly < I = hnlly + 1hn = foll, = 0 asn— oo

For (ii) note, for each h € H, that the quadratic

If = (fo +th)|I> = If = foll> = 2t(f — fo.h) + t*[|h]3
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achieves its minimum value 6% at ¢ = 0, which forces the coefficient of ¢ to
equal zero.

For (iii) suppose fo, f1 € H and both f — fp and f — f; are orthogonal
to each h in H. Then the difference fo — fi must be orthogonal to itself,
that is || fo — f1]|3 = 0, forcing fo = f1 a.e.[u].

Equality (iv) follows from the fact that (f — fo, fo) = 0.

The function fp, which is unique only up to p-equivalence, is called an
(orthogonal) projection of f onto Hy. For each f, by arbitrarily picking one
member from [fo] N Ho as THE projection of f we get a map mg from L2
into Hy whose behavior involves many almost everywhere exceptions. For
example, suppose f and g are functions in £2 with mo(f) = fo and mo(g) =
go. for i = 1,2. For constants ¢ and d, part (iii) of the Theorem gives

c(f — fo,h) =0=d(g — go, h) for all A in Hy.
Linearity of the inner product in its first argument gives
(c(f = fo) +d(g —go),h) =0 for all h in Hy.

That is, cfy + dgo satisfies the equalities that define my(cf + dg) up to a
p-equivalence, which implies

molef +dg) = emo(f) + dmo(g)  a.e.[u].

This result is as close to linearity as we can hope to get for a map that is
only defined up to a p-equivalence.

Continuous linear functionals

Suppose 7 : £L2(X, A, u) — R is a continuous linear functional, in the sense
of Example <2>. From that Example you know that the linear subspace
Ho = {h € L2 : 7(h) = 0} is closed as a subset of £2.

To avoid trivialities, suppose there exists an f in £2 for which 7(f) # 0.
Without loss of generality we may assume 7(f) = 1.

By Theorem <4>, there exists an fp in Hy for which (h, f — fo) = 0
for all h in Hy. Define go = f — fo. The construction ensures that 7(gg) =
7(f) —7(fo) = 1. By continuity, 1 < C'||go||,, which implies that |/go||, # O.
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§3 Conditioning heuristics 5

If h € £% with 7(h) = d then h — dgo € H, because 7(h — dgg) = 0.
The equality (h — dgo, go) = 0 rearranges to (h,go) = d||gol|3. If we define
k := go/ llgoll5 then

7(h) = (h, k) for all h in £2.

The £? function k for which <7> holds is unique up to a p-equivalence.
For if k1 is another £2 function with 7(h) = (h, k1) for all h € £? then

0=r7(h)—7(h) = (h,k) — (h, k1) = (h,k — k1) for all h in £2.

The choice h = k — k1 shows that ||k — k:1||§ =0, so that k1 = k a.e.[u].

Conditioning heuristics

Recall the conditioning problem. We have probability spaces (X, A,P) and
(4,B,Q) and an A\B-measurable map 7" from X into Y whose distribution
under P is Q. That is

Qg = Pg(Tx) at least for g € M (Y, B).

We seek a Markov kernel K = {K, : y € Y}—a family of probability mea-
sures on A for which y — K, A is B-measurable for each A € A—for which

Pf(x) = Q'K f(x) for each f € M*(X,A)
and

Kz :Tx#y}=0 a.e.[Q].

Let me show you how this conditioning problem is related to the results
from Section 2.

To simplify notation, write (-, -)g and ||-[|¢, for the £2(Q) := £*(Y, B, Q)
inner product and norm, with a similar convention for £2(P) := £2(X, A, P).

It is particularly informative to consider functions of the form f(z) =
g(Tx)h(z), with g € £L2(Q) and h € L%(P). By Cauchy-Schwarz,

(Plg(T2)h(x)])* < (Pg(Tz)®) (Ph(z)*) = llg[g IRz < oo

That is, f € £L!(P). For each fixed h in £2(PP), the linear functional 73, that
maps g to Pg(Tx)h(x) is well defined. Again by Cauchy-Schwarz we have

17(9)] < llgllq IAllg
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§3 Conditioning heuristics 6

which shows 7, is continuous. The argument in Section 2 provides a func-
tion H in £2(Q), which is unique up to Q-equivalence, such that

h(9) = (9, H)q for all g € £2(Q).

Now suppose a Markov kernel K satisfying equalities <8> and <9>
exists. We can extend <8> to functions f in £!(X,A, i) by subtraction of
the equalities for f* and f~.

Remark. The equality P|f| = QVKJ|f(x)| implies that K7|f(z)| < oo
a.e.[Q]. We could possibly have K, f* = K, f~ = oo for a Q-negligible
set of y’s, a situation analogous to the one studied in HW7.1. A similar
fix is possible.

In particular

P*g(Ta)h(x) = QK (9(Ta)h(z)) by <s>
=QY(y) K h(z) by <9>
= (g, H1)g where Hy(y) = Kjh(z).

The function H; might take infinite values, but only on a Q-negligible set:
by Cauchy-Schwarz for K, we have Hy(y)? < K;}(x)z and

Q (Hi(y)?) < QYK{h(z)* = Ph?* < oco.

With only Q-negligible guilt I declare H; to be a candidate for the repre-
sentation <10> of 7y.

Let us ponder. You know, for each fixed h in £2(P), that there always
exists an H (unique up to Q-equivalence) in £2(Q) for which

Pg(Tx)h(z) = Qg(y)H(y)  for all g in L*(Q).

You also know that, if conditional distributions exist, we can take H as K, (h),
or perhaps (K,h) 1{y € Y : Q(K,h? < oo} if you worry about the infini-
ties. Put another way P(h | Y = y) = H(y) a.e.[Q], where P(- | Y = y) is
tradition shorthand for K.

If you are only interested in P(h | Y = y) for a single function h (or a
countable set of h’s) in £2(IP) it might appear unnecessary to worry about
existence of P(- | Y = y) as a set of probability measures on A. Instead
you could regard the conditional expected value P(h | Y = y), for a single h
in £L2(P), as the value at y of function that maps £2(P) into £2(Q). Of
course you would need to extend the map to cover functions h in L'(P) if
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§4 Conditioning a la Kolmogogorov 7

you wanted a conditional expectation operator that didn’t restrict its domain
to square integrable functions.

The previous paragraph essentially describes the approach described by
Kolmogorov (1933, Chapter 5) to define a conditional expectation map,
except that he invoked the Radon-Nikodym theorem (see Section 7) to prove
existence.

4 Conditioning a la Kolmogogorov

Let me formalize the ideas introduced at the end of the previous Section.

Again assume we have probability spaces (X, A,P) and (Y,B,Q) and
an A\B-measurable map T from X into Y whose distribution under P is Q.
That is

Qg =Pg(Tx) at least for g € M+ (Y, B).

The following details show how to construct a map x : M (X, A) — M (Y, B)
with properties analogous to those for expectation with respect to a Markov
kernel. To avoid a lot of messy parentheses I'll write x(y, h), or k(y, h(zx)),
for the value of k(h) at y.

<12>  Theorem. There exists a map k : MT(X, A) — M*(Y,B) for which
<13> Pg(Tx)h(z) = Qq(y)k(y, h) for all h € M+ (X, A) and g € MT(Y,B).
The map has the following properties.

(i) For each fixed h, equality <13> uniquely determines k(y,h) up to Q-
equivalence.

(ii) K(y,0) =0 and K(y,1) =1 a.e.[Q).

(iti) K(y, g1 (Tx)hi(z)+g2(Tx)ho () = g1(y)K(y, h1)+92(y) K (y, h2) a.e.[Q]
for all functions g; € M+ (Y,B) and h; € MT(X,A).

(iv) If hy < hg a.e.[P] then k(y, h1) < k(y, ha) a.e.[Q].

(v) If hyy € M (X, A) and 0 < hp(x) < hpp1(z) T h(x) as n — oo a.e.[P)
then k(y, hy) T k(y, h) a.e.[Q].

We would get very similar properties if x(y, h) = K h(z) for a Markov
kernel K satisfying <8> and <9>. Notable by its absence is an assumption
corresponding to K,{z € X : Tz # y} a.e.[Q]. In its place is property (iii),
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§4 Conditioning a la Kolmogogorov 8

which asserts that functions g¢;(Tx) behave like constants as far as k is
concerned. On the plus side, we do not need any assumptions about beyond
the A\ B-measurability.

Remark. The Theorem could be thought of as the first step towards
construction of a true Markov kernel that provides conditional distribu-
tions. The main difficulty would then be to consolidate the uncountably
many a.e.[Q] qualifications into a single Q-negligible set.

WARNING: Many authors would write P(h | T = y) for my func-
tion k(y, h), mimicking the notation for the integral with respect to a true
conditional probability distribution P(- | 7" = y). See Section 5 for one of
the dangers of treating the Kolmogorov conditional expectation operator as
if it had all the properties of an expectation with respect to a conditional
probability distribution.

PROOF (OF THEOREM <12>) Homework 8 provides the tool needed for the
proof: If G1,Go € M+ (Y, B) have the property that

QG1(y)1{y € B} < QG1(y)1{y € B} for all Bin B
then G1(y) < Ga(y) a.e.[Q]. In particular, if
QG1(y)1{y € B} = QG1(y)1{y € B} for all B in B

then G1(y) = Ga(y) a.e.]Q]. (Apply <14> with the roles of G; and Ga
reversed to get G1(y) > Ga(y) a.e.[Q)].)

Back to the proof of the Theorem. The main challenge is to construct,
for each h in M*(X,A), just one function k(y,h) for which <13> holds.
Property (i) will then follow directly from <15>.

For property (ii) the choice is easy: if h(x) = ¢ € RT define x(y, h) = c,
the constant function taking value ¢ on Y. Equality <13> then reduces to
the fact that Q is the image of P under T'.

To construct s(y,h) in general, start with the analogous £2 property
given by equality <11>, namely, for each h € £2(P) we have an H € £2(Q)
for which

Pg(Tz)h(z) = Qg(y)H(y)  for all g in L*(Q).

Write M(y,h) for the function H(y). That is, M is regarded as a map
from £2(P) into £2(Q), which is only unique up to Q-equivalence for each
fixed h.
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§4 Conditioning a la Kolmogogorov 9

To pass from <11> to a suitable choice for k we need first to prove
an L% analog of (iv): If hy,hy € L3(P) and 0 < hy < h a.e.[P] then
0 < M(y,h1) < M(y,h2) a.e.[Q]. To this end, invoke <11> with g(y) =
1{y € B} with B € B.

Ql{y € B}M(y,h1) =P1{Tx € B}hi(x)
< P1{Tx € B}hy(z) because hy < ho a.e.[P]
= QU{y € B}M(y, ho).

All integrals in the last display are non-negative because h; > 0 a.e.[P]. To
get 0 < M(y, h1) a.e.]Q] invoke <14> with G; = 0 and Ga(y) = M (y, h1).
To get M(y,h1) < M(y,h2) a.e Q] invoke <14> with G; = (y,h;) and
Ga(y) = M(y, ha).

Now we have everything needed to construct k. Suppose g € M*(Y,B)
and h € M*(X,A). For all m,n € N the function g,,(y) = min(m, g(y))
belongs to £2(Q) and the function hy,(z) = min(n, h(x)) belongs to L£L2(P).
From <11>,

Pgm (Tz)hn(z) = Qg (y) M (y, hn).

Define k(y, h) = sup,, M (y, hy,). From the previous paragraph we know that
0 < M(y,hy) T k(y, h) a.e.[Q]. Let n tend to oo with m held fixed, appealing
twice to Monotone Convergence to get

Pgm(T$)h($) = @gm(y)’%(yv h)

Then let m tend to oo, with two more appeals to Monotone Convergence to
get <13>.

For property (iii), temporarily write f(z) for g1(Tx)hi(x)+ go(Tx)ha(z).
By definition, k(y, f) is determined up to Q-equivalence by the first in the
following string of equalities. For each G € M™ (Y, B),

It follows by <15> that x(y, f) = H(y) a.e.[Q].
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The argument for property (iv) is essentially the same as ints £2? analog.
For each G € M™* (Y, B),

QG(y)r(y, ) = PG(Tx)h(x) < PG(Tw)he(z) = QG(y)k(y, he).

By <14> we have k(y, h1) < k(y, h2) a.e.[Q].
For property (v) first note that, by property (iv),

0 < k(y, hn) T H(y) := sup,, k(y, hn) a.e.[Q].
Then observe that, for each g € M* (Y, B),

Pg(Tz)h(x) = limp—00 Pg(Tx) hy () by Monotone Convergence

= limy, 00 Q9 (y)5(y, hn)
= Qg(y)H (y) by Monotone Convergence,

which identifies H(y) as one possible choice for x(y, h).

I leave it to you to figure out how to extend & to functions in £1(X, A, P).
The only (minor) difficulties involve a Q-negligible set of cases where k(y, h™)
or k(y,h™) (or both) take the value +occ.

Dangers

As in Section 3, suppose (X, A, P) and (Y, B, Q) are probability spaces and T’
is an A\ B-measurable map from X to Y whose distribution under P equals Q.

To begin with, suppose K = {K), : y € Y} is a condition distribution in
the sense of <8> and <9>. That is, there exists a Q-negligible set N for
which Ky{T'z # y} = 0 for each y in N° and Ph = QYK h(z) for each h
in M*(X,A).

Consider h’s of the form h(x) = f(x,Tx) with f € MT(X x Y, A ® B).
By the concentration property

Ky f(z,Tx) = K} f(z,y) for each y in N€.

This assertion holds simultaneously for every such f. If we use the suggestive
notation P(- | T' = y} for the probability measure K, then the result becomes

P(f(z,Tx) | T =y) =P(f(z,y) | T =y)
for all y € N¢, all f € MT(X x Y, A @ B).

’52 stuff D> Draft: 19 March 2018 © David Pollard




<16>

<17>
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A similar assertion need not be true if conditional distributions do not ex-
ist. In that situation we need to use the Kolmogorov conditional expectation.
That is, we need to rely on existence of a map x : M (X, A) — M*(Y,B)
that has the properties described in Theorem <12>. Implicitly that means
we have made some choice of Kh from the Q-equivalence class of possibilities
for each h in Mt (X, A). I claim it need not be true that

”

Ry, (2, T2) Z k(y, fo,y)  aelQ)?.

The question marks are to make sure you do not regard the assertion as true
if you happen to refer back to it at some stage.

Remark. I am interpreting <16> (without all the question marks) as
an assertion about every map &, from M™ (X, A) into MT (Y, B), that
has property <13>.

Indeed, the map x would interpret the f(x,y) in <16> as a function of =
that depends on some constant y. It helps to separate the two roles played
by y in <16> by writing f(z,t) or f;(z) instead of f(z,y). If we define
H; = k(f;) for each ¢t € Y then the equality <16> could be interpreted to
assert

Ky, f(z,Tx)) = Hy(y)

for a suitably large collection of ¥’s.

Right away you can see that the right-hand side could cause measura-
bility trouble because we have no reason to believe H;(y) depends on ¢ in a
nice way. Moreover, each H; is just one function chosen somewhat arbitrar-
ily from an equivalence class of possibilities. If Q{t} = 0 for each ¢ in Y, we
would not violate the assumptions of Theorem<12> by redefining H;(t) =0
for every t. That would cause obvious problems for <16>.

A more concrete example might clarify the issues in the previous para-
graph.

Example. Suppose P = N(0, I), the standard bivariate distribution on A :=
B(R?). It has density p(z) = (27) ! exp(—|x|?/2) with respect to Lebesgue
measure on A. Define T'(x) = |x|?/2, a suitably measurable map from X :=
R? into Y := R*.

It is easy to show—for example, you could use the same Tonelli trick that
gave the /27 for the normal density—that the distribution, Q, of 7' under P
has density ¢(y) = e”¥ with respect to Lebesgue measure on B := B(Y).
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It seems natural to define k(h) to be the zero function on Y for each h
in M (X, A) with h(z) = 0 a.e.[P], because then we have

QY%(y)k(y,h) =0 =Pg(Tx)h(x) for each g in M* (Y, B).

Such a choice does not violate any of the assumptions of Theorem <12>.

For each t € Y define f(z,t) = fi(xr) = 1{Tx = t}. Note that the
set {x : Tx = t} is the circle of radius v/2¢ around the origin, a set that
has zero P measure. Consequently, by the natural choice from the previous
paragraph, we have H; := k(f:) equal to the zero function. We also have
f(z,Tx) =1 for every x, which forces x(y, f(z,Tz)) = 1 a.e.[Q]. We have
an extreme violation of the assertion in <16>.

Remark. You might want to dismiss Example <17> as a trifle caused
by too cavalier a treatment of uncountably many negligible sets. It is
certainly possible to make a more careful choice of k(f;) to rescue <16>.
Indeed, it possible to get a true conditional distribution: take K, to be
the uniform distribution on the circle {z : T = y}. That is actually
the whole point. Kolmogorov conditional expectation maps allow
us to ignore P-negligible changes in each h(x) function; conditional
distributions require us to handle uncountably many negligible sets in
a clever way.

Bringing it all back to X

Theorem <12> treated the case of probability spaces (X, A,P) and (Y, B, Q)
and an A\B-measurable map T whose distribution under P was equal to Q.
It gave existence of a map x : M (X, A) — M* (Y, B) for which

Pg(Tx)h(z) = Qg(y)k(y, h) for all h € M+ (X, A) and g € MT(Y,B).

If we write H(y) for k(y,h) then use the fact that QG(y) = PG(Tx) for
all G € M (Y, B) we get

Pg(Tz) = Qg(y)H(y) = Pg(Tz)H(Tz).

The functions z — ¢g(Tx) and x — H(Tz) both belongs to M (X, By),
where

Bo={T"'B:BecB}=0o(T).

Define a map & : MT(X, A) — M*(X,Bg) by setting x(x, f) := H(Tx)
if kf = H. Then

PG(x)f(z) = PG(z)k(x, f) for all G € M* (X, By).
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In currently popular notation, the function kf (on X) would be written
as E(f | T'), which I regard as an archaic way of writing P(f | T'). The value
of P(f | T) at = equals k(z, f).

Remark. Note the difference between H(y) = s(y, f) =P(f | T = y)
and H(Tz) = #(z, f) = (P(f | T)) (x).

The M (X, Bg) function P(f | T) can also written as P(f | Bg) or Pg, (f).
That is, Pg, maps M* (X, A) into MT (X, By).

Notice that the map 1" seems to have disappeared from the notation,
with only the By as a reminder of the role that 1" played. That reminder
becomes totally redundant if use a cunning notational trick.

Suppose B is actually a sub-sigma-field of A, that is, B actually lives
on X. We could take Y to be X and regard T' as the identity map on X,
that is, T2 = x. Then By would be exactly the same as B, and M™* (Y, B)
would be the same as M* (X, B), and Pz would be a map from M (X, A)
into M (X, B) for which

P(fG) =P[(Psf)G]  for all G € M*(X,B).

The function Py f is called the Kolmogorov conditional expectation of f
given the sub-sigma-field B. It inherits from Theorem <12> the following
properties.

(i) For each fixed f in M*(X,A) the equality <18> uniquely determines
Py f up to P-equivalence.

(ii)) Pg0 =0 and Pyl =1 a.e.[P].

(iii)
PPB(GlflGQfQ) = G1Pg f1 + GoPP3 fo a.e.[IP’] for all G; € M*(DC,B)
and f; € MH(X, A).

(iV) If f1 < fo a.e.[IP] then Pg f1 < Pg fo a.e.[IP’].

(v) If f, € MH(X,A) and 0 < f1 < fo... T f as n — oo a.e.[P] then
Py fn T Py f a.e[P].
Remark. Here I am using P to denote both a measure on A and

its restriction to B. Would it help to make up a new name for the
restriction?
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Example. Suppose (X, A,P) is a probability space and we have sub-sigma-
fields By C By C A. Show that

Py, (Pg, f) = Pg, f a.e.[P] for each f in MT(X,A).
Define h = Pg, f and k = Pg,h. By definition

PG f = PG1ih for all G; € M+ (X, By)
PGQh = PGQk for all GQ € M*(DC, 'Bg)

Replace GG1 by G2 in the first equality to deduce
PGy f = PGoh = PGok.

Thus £ has the two properties that identify it as a possible value for Pg, f.
Equality a.e.[P] follows.

Radon-Nikodym theorem

The simplest form of the theorem concerns two finite measures p and v
defined on some (X, A).

Theorem. If uX < oo and uf > vf for each f in MT(X,A) then there
exists an A-measurable function A with 0 < A(z) <1 for all x such that

vf=pu(fA) for each f in MT(X,A).

That is, the measure v has density A with respect to the measure u. The
function A is unique up to p-equivalence.

PROOF (sketch of a proof due to von Neumann, 1940, page 127)
Write [|-[|, and (-, -),, for the norm and inner product on L2 := L2(X, A, ).

Regard v as a linear functional on £2. By Cauchy-Schwarz, the functional
is continuous, in the sense of Example <2>:

vl <vif1l] <V (vf)(w1?) <|fll,vvX for all € £2.
Section 2 tells us that there exists a function k in £2 for which
vi={(f,k)n=n(fk) for all € £2.

I'll show that, 0 < k <1 a.e.[u].
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For each € > 0,
0 <v{k < —e} =pk{k < —€} < —ep{k < —¢}.

It follows that u{k < —e} = 0 for each € > 0 and hence pu{k < 0} = 0.
Similarly, the inequality

plk>1+ef>v{k>1+et=pk{k>1+¢} > 1 +e)u{k >1+¢}

implies p1{k > 1+€} = 0 for each € > 0 and hence p{k > 1} = 0. Define A =
k1{0 < k < 1}. Then vf = u(fA) for all f € £2.
For functions f in M*(X,.A) we have f An € £? so that

v(f An) = u((f Am)A).

Let n tend to infinity, appealing twice to Monotone Convergence to deduce
that vf = ufA).
The uniqueness a.e.[u] of A follows from the p analog of <15>.

Theorem <20> has an extension to sigma-finite measures p and v with v
dominated by p, that is: for each A € A, if uA =0 then vA = 0.

Remark. Domination is sometimes expressed as “v is absolutely
continuous with respect to p”, which is often denoted by v < p. This
terminology borrows from the classical concept of absolute continuity
of a function defined on the real line (Pollard, 2001, Section 3.4). The
density A is often denoted by dv/du and is called the Radon-Nikodym
derivative of v with respect to .

Theorem. If i and v are both sigma-finite measures with v dominated by
then there exists a real-valued function Ay € M1 (X,A) for which

v = u(fAp) for each f in MT(X,A).
The function A is unique up to p-equivalence.

PROOF (Sketch. For details see Pollard (2001, Section 3.2).)

The idea is to first treat the case where 1 and v are finite measures, with
v < u, by appealing to Theorem <20> with u replaced by A = p+ v. One
argues from the inequality

v{A>1} = vA{A > 1} + pA{A > 1}
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that u{A > 1} = 0, which implies v{A > 1} = 0. For h € M+ (X, A)
and n € N one needs to rearrange the equality

(hAR)I{A <1—n"1}

vf=v(fA)+p(fA)  for f = e

to get vf(1 —A) = ufA. Two appeals to Monotone Convergence then give
vh = phAg with

A
- = < .
Ag=—xHo<A <

The sigma-finite version of the Theorem is then proved by partitioning X
into a sequence of sets X; for which vX; + uX; < co and applying the result
for finite v and p on each X;.
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