Lambda spaces

- <1> **Definition.** A set \mathcal{D} of subsets of \mathfrak{X} is called a λ -class of sets if:
 - (i) $\mathfrak{X} \in \mathfrak{D}$
 - (ii) \mathcal{D} is stable under proper differences: if $D_1 \supset D_2$ and both sets belong to \mathcal{D} then $D_1 \setminus D_2 \in \mathcal{D}$. Compare with $\mathbb{1}_{D_1 \setminus D_2} = \mathbb{1}_{D_1} - \mathbb{1}_{D_2}$
 - (iii) If $\{D_n : n \in \mathbb{N}\} \subset \mathcal{D}$ and $D_1 \subseteq D_2 \subseteq \dots$ then $D = \bigcup_{n \in \mathbb{N}} D_n \in \mathcal{D}$. Compare with $\mathbb{1}_{D_n} \uparrow \mathbb{1}_D$ (pointwise).
- <2> Definition. A set \mathcal{H} of bounded, real-valued functions on a set \mathfrak{X} is called a λ -space of functions if
 - (i) $1 \in \mathcal{H}$
 - (ii) H is a vector space (under pointwise operations)
 - (iii) if $\{h_n : n \in \mathbb{N}\} \subset \mathcal{H}$ and $h_n(x) \uparrow h(x)$ for each $x \in \mathcal{X}$ and the limit h is bounded then $h \in \mathcal{H}$.

Remark. When checking (iii) there is no loss of generality in assuming $h_1(x) \ge 0$ for all x. Compare with $0 \le h_n(x) - h_1(x) \uparrow h(x) - h_1(x)$ and the vector space property.

<3> **Definition.** If \mathfrak{G} is a set of real-valued functions on \mathfrak{X} then $\sigma(\mathfrak{G})$ denotes the smallest sigma-field on \mathfrak{X} for which each member of \mathfrak{G} is $\sigma(\mathfrak{G}) \setminus \mathfrak{B}(\mathbb{R})$ measurable. It is generated by the collection of all subsets of \mathfrak{X} of the form $\{x \in \mathfrak{X} : g(x) > t\}$ with $g \in \mathfrak{G}$ and $t \in \mathbb{R}$. (Why?)

> If \mathcal{A} is a sigma-field on \mathfrak{X} , write $\mathfrak{M}_{bdd}(\mathfrak{X}, \mathcal{A})$ for the set of all real-valued, bounded, $\mathcal{A}\setminus \mathcal{B}(\mathbb{R})$ -measurable functions on \mathfrak{X} . Note that $\mathfrak{M}_{bdd}(\mathfrak{X}, \mathcal{A})$ is a λ space. The space $\mathfrak{M}_{bdd}(\mathfrak{X}, \sigma(\mathfrak{G}))$ plays a role analogous to $\sigma(\mathcal{E})$ for λ -classes of sets.

Key facts

1

|2|

$\mathcal D$ a $\lambda\text{-class}$ of sets	${\mathcal H}$ a lambda space of functions
If \mathcal{D} is stable under pairwise intersections then \mathcal{D} is a sigma-field.	If \mathcal{H} is stable under pairwise prod- ucts then $\mathcal{H} = \mathcal{M}_{bdd}(\mathcal{X}, \sigma(\mathcal{H})).$
If \mathcal{E} is a set of subsets of \mathcal{X} that is stable under pairwise intersections and $\mathcal{D} \supseteq \mathcal{E}$ then $\mathcal{D} \supseteq \sigma(\mathcal{E})$.	If \mathcal{G} is a set of bounded real functions on \mathcal{X} that is stable under pairwise products and $\mathcal{H} \supseteq \mathcal{G}$ then $\mathcal{H} \supseteq \mathcal{M}_{bdd}(\mathcal{X}, \sigma(\mathcal{G})).$

Steps towards proving facts for a λ -space \mathcal{H}

- (Easy.) Define $\mathcal{D} = \{D \subseteq \mathfrak{X} : \mathbb{1}_D \in \mathcal{H}\}$. Show that \mathcal{D} is a λ -class of sets and $\mathcal{D} \subseteq \sigma(\mathcal{H})$. Deduce that \mathcal{D} is a sigma-field if \mathcal{H} is also stable under pairwise products.
 - Show that \mathcal{H} is stable under uniform limits. That is, if $h_n \in \mathcal{H}$ and $\|h_n h\|_{\infty} := \sup_{x \in \mathcal{X}} |h_n(x) h(x)| \to 0$ then $h \in \mathcal{H}$. First show that h is uniformly bounded. Then argue that there is a subsequence for which $\|h_{n(k)} h\|_{\infty} \leq \delta_k := 2^{-k}$ so that

$$\delta_k + h_{n(k)}(x) \ge h_{n(k-1)}(x) - \delta_{k-1}$$
 for all $x \in \mathfrak{X}$.

Deduce that $g_k(x) := h_{n(k)}(x) + 3 \sum_{i \leq k} \delta_i$ belongs to \mathcal{H} and it increases pointwise to h(x) + c for some constant c. Then what?

- 3 Suppose \mathcal{H} is stable under pairwise products. Show that if p_n is a polynomial then $p_n \circ h \in \mathcal{H}$ if $h \in \mathcal{H}$. Use the Weierstrass approximation theorem to deduce that if $h \in \mathcal{H}$ takes values in [a, b] and f is a continuous real-valued function on [a, b] then $f \circ h \in \mathcal{H}$. [Remember that $(f \circ h)(x) = f(h(x))$.]
- 4 Deduce from the previous result that if $h, h_1, h_2 \in \mathcal{H}$ then $h^+, h^-, max(h_1, h_2)$, and min (h_1, h_2) all belong to \mathcal{H} .
- 5 Suppose \mathcal{H} is stable under pairwise products. For each $c \in \mathbb{R}$ show that

$$\min\left(1, n(h-c)^+\right) \uparrow \mathbb{1}\{h > c\} \qquad \text{as } n \to \infty.$$

Deduce that $\{h > c\} \in \mathcal{D}$ if $h \in \mathcal{H}$.

- By taking limits of simple functions deduce that $\mathcal{H} \supseteq \mathcal{M}_{bdd}(\mathfrak{X}, \mathcal{D})$ if \mathcal{H} is stable under pairwise products.
 - If \mathcal{G} is a set of bounded real functions on \mathcal{X} and $\mathcal{H} \supseteq \mathcal{G}$, show that there is a smallest λ -space \mathcal{H}_0 for which $\mathcal{H} \supseteq \mathcal{H}_0 \supseteq \mathcal{G}$. (Mimic the proof for $\mathcal{D}(\mathcal{E})$.) Write \mathcal{D}_0 for $\{D \subseteq \mathcal{X} : \mathbb{1}_D \in \mathcal{H}_0\}$. Suppose \mathcal{G} is stable under pairwise products.
 - (i) Mimic the proof of the $\pi \lambda$ theorem for sets to prove that \mathcal{H}_0 is stable under pairwise products. Deduce that \mathcal{D}_0 is a sigma-field.
 - (ii) Deduce that $\{h > c\} \in \mathcal{D}_0$ for each h in \mathcal{H}_0 and each $c \in \mathbb{R}$.
 - (iii) Deduce that $\mathcal{D}_0 \supseteq \sigma(\mathfrak{G})$. Hint: $\{g > c\} \in \mathcal{D}_0$ for each g in \mathfrak{G} .
 - (iv) Deduce that $\mathcal{H}_0 \supseteq \mathcal{M}_{bdd}(\mathfrak{X}, \sigma(\mathfrak{G}))$.

6

|7|