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d'intégrale”, Matematisk Tidsskrift B. The copy was made from the
English version of the article in the book, entitled "Measure and
Integral”, edited and translated by Kenneth O. May.

THE DEVELOPMENT
OF THE INTEGRAL CONCEPT

Gentlemen:

Leaving aside all technicalities, we are going to examine the succes-
sive modifications and enrichments of the concept of the integral and the
appearance of other notions used in recent research on functions of a real
variable.

Before Cauchy there was no definition of the integral in the modern
meaning of the word “definition.” One merely said which areas had to
be added or subtracted in order to obtain the integral f: f(x) dx.

For Cauchy a definition was necessary, because with him there
appeared the concern for rigor which is characteristic of modern mathe-
matics. Cauchy defined continuous functions and their integrals in about
the same way as we do today. In order to arrive at the integral of f(x)
it suffices to form the sums (Fig. 1)

S = Zf(ENxin1 — xJ), (D
which surveyors and mathematicians have always used to approximate
area, and then deduce the integral [%f(x)dx by passage to the limit.

Although the legitimacy of such a passage to the limit was evident for
one who thought in terms of area, Cauchy had to demonstrate that S
actually tended to a limit in the conditions he considered. A similar neces-
sity appears every time one replaces an experimental notion by a purely
logical definition. One should add that the interest of the defined object
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is no longer obvious, it can be developed only from a study of the proper-
ties following from the definition. This is the price of logical progress.

What Cauchy did is so substantial that it has a kind of philosophic
sweep. It is often said that Descartes reduced geometry to algebra. I would
say more willingly that by the use of coordinates he reduced all geometries
to that of the straight line, and that the straight line, in giving us the
notions of continuity and irrational number, has permitted algebra to
attain its present scope.

In order to achieve the reduction of all geometries to that of the
straight line, it was necessary to eliminate a certain number of concepts
related to geometries of several dimensions such as the length of a curve,
the area of a surface, and the volume of a body. The progress realized by
Cauchy lies precisely here. After him, in order to complete the arithmetiza-
tion of mathematics it was sufficient for the arithmeticians to construct
the linear continuum from the natural numbers.

And now, should we limit ourselves to doing analysis? No. Certainly,
everything that we do can be translated into arithmetical language, but if
we renounce direct, geometrical, and intuitive views, if we are reduced
to pure logic which does not permit a choice among things that are
correct, then we would hardly think of many questions, and certain
concepts, for example, most of the ideas that we are going to examine
here today, would escape us completely.

For a long time certain discontinuous functions have been integrated.
Cauchy’s definition still applies to these integrals, but it is natural to
examine, as did Riemann, the exact capacity of this definition.

If f; and f; represent the lower and upper bounds of f(x) in (x;, Xi41),
then S lies between
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§ = ZL(X,‘.H — x.-) and S = Eﬁ(xm - x.-).

Riemann showed that for the definition of Cauchy to apply it is sufficient
that

S — 8 =2(fi — Dxin — X))
tends toward zero for a particular sequence of partitions of the interval
from a to b into smaller and smaller subdivisions (x;, Xi41). Darboux

added that under the usual operation of passage to the limit S and S
always give two definite numbers

[ireyax  and [ 1 ax.

These numbers are generally different and are equal only when the
Cauchy-Riemann integral exists.

From a logical point of view, these are very natural definitions, aren’t
they? However, one can say that from a practical point of view they
have been useless. In particular, Riemann’s definition has the drawback of
applying only rarely and in a sense by chance.

It is evident that breaking up the interval (a, b) into smaller and
smaller subintervals (x;, X:;;) makes the differences f; — f; smaller and
smaller if f(x) is continuous, and that the continued refinement of the
subdivision will make S — S tend toward zero if there are only a few

points of discontinuity. But we have no reason to hope that the same
thing will happen for a function that is discontinuous everywhere. To
take smaller intervals (x;, X:11), that is to say values of f(x) corresponding
to values of x closer together, does not in any way guarantee that one
takes values of f(x) whose differences become smaller.

Let us be guided by the goal to be attained—to collect approximately
equal values of f(x). It is clear then that we must break up not (a, b), but

the interval (f,f) bounded by the lower and upper bounds of f(x) in

(a, b). Let us do this with the aid of number y; differing among themselves
by less than e. We are led to consider the values of f(x) defined by

Yi £f(X) < yinr
The corresponding values of x form a set E;. In Figure 2 this set E;
consists of four intervals. With some continuous functions it might con-
sist of an infinity of intervals. For an arbitrary function it might be very
" complicated. But this matters little. It is this set E; which plays the role
analogous to the interval (x;, Xi41) in the usual definition of the integral
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of continuous functions, since it tells us the values of x which give to f (x)
approximately equal values.

If ; is any number whatever taken between y; and yi1, i < 1: < pisy,
the values of f(x) for points of E; differ from »; by less than e. The number
n: is going to play the role which f(¢;) played in formula (1). As to the
role of the length or measure x;;; — x; of the interval (x;, x;;.), it will
be played by a measure m(E;) which we shall assign to the set E; in a
moment. In this way we form the sum

S = Znim(E)). (2)
Let us look closely at what we have just done and, in order to understand
it better, repeat it in other terms.

The geometers of the seventeenth century considered the integral of
JS(x)—the word “‘integral” had not been invented, but that does not mat-
ter—as the sum of an infinity of indivisibles, each of which was the ordi-
nate, positive or negative, of f(x). Very well! We have simply grouped
together the indivisibles of comparable size. We have, as one says in
algebra, collected similar terms. One could say that, according to Rie-
mann’s procedure, one tried to add the indivisibles by taking them in
the order in which they were furnished by the variation in x, like an un-
systematic merchant who counts coins and bills at random in the order
in which they came to hand, while we operate like a methodical merchant
who says:

I have m(E,) pennies which are worth 1-m(E),
I have m(E,) nickels worth 5-m(E),
I have m(E;) dimes worth 10-m(Ey), etc.

Altogether then I have
S=1-mE)+2-m(E)+ 5 m(E)+ --.
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The two procedures will certainly lead the merchant to the same
result because no matter how much money he has there is only a finite
number of coins or bills to count. But for us who must add an infinite
number of indivisibles the difference between the two methods is of capital
importance.

We now consider the definition of the number m(E;) attached to E..
The analogy of this measure to length, or even to a number of coins,
leads us naturally to say that, in the example of Fig. 2, m(E;) will be the
sum of the lengths of the four intervals that make up E;, and that, in an
example where E; is formed from an infinity of intervals, m(E;) will be
the sum of the length of all these intervals. In the general case it leads us
to proceed as follows. Enclose E; in a finite or denumerably infinite num-
ber of intervals, and let 4, A, ... be the length of these intervals. We
obviously wish to have

mE)<h+bL+ -
If we look for the greatest lower bound of the second member for
all possible systems of intervals that cover E;, this bound will be an upper
bound of m(E;). For this reason we represent it by m(E;), and we have

m(E;) < m(E). (€))
If C is the set of points of the interval (a, ) that do not belong to
E;, we have similarly
m(C) < m(C).
Now we certainly wish to have
m(E) + m(C) = m[(a, b)] = b — a;
and hence we must have
m(E) > b — a — m(C). ()

The inequalities (3) and (4) give us upper and lower bounds for m(E;).
One can easily see that these two inequalities are never contradictory.
When the lower and upper bounds for E; are equal, m(E,) is defined, and
we say then that E, is measurable.!

! The definition of measure of sets used here is that of C. Jordan, Cours d’analyse
de I’ Ecole Polytechnigue, Vol. I, but with this modification, essential for our purpose,
that we enclose the set E; to be measured in intervals whose number may be infinite,
while Jordan employed only a finite number. This use of a denumerable infinity in
place of a finite number of intervals was suggested by the work of Borel, who himself
had utilized this idea in order to get a definition of measure (Legons sur la théorie des
fonctions).
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