Chapter 6
Martingale et al.

SECTION 1 gives some examples of martingales, submartingales, and supermartingales.

SECTION 2 introduces stopping times and the sigma-fields corresponding to “information
available at a random time.” A most important Stopping Time Lemma is proved,
extending the martingale properties to processes evaluted at stopping times.

SECTION 3 shows that positive supermartingales converge almost surely.

SECTION 4 presents a condition under which a submartingale can be written as a
difference between a positive martingale and a positive supermartingale (the Krickeberg
decomposition). A limit theorem for submartingales then follows.

SECTION *5 proves the Krickeberg decomposition.

SECTION *6 defines uniform integrability and shows how uniformly integrable martingales
are particularly well behaved.

SECTION *7 show that martingale theory works just as well when time is reversed.

SECTION *8 uses reverse martingale theory to study exchangeable probability measures on
infinite product spaces. The de Finetti representation and the Hewitt-Savage zero-one
law are proved.

1. What are they?

The theory of martingales (and submartingales and supermartingales and other
related concepts) has had a profound effect on modern probability theory. Whole
branches of probability, such as stochastic calculus, rest on martingale foundations.
The theory is elegant and powerful: amazing consequences flow from an innocuous
assumption regarding conditional expectations. Every serious user of probability
needs to know at least the rudiments of martingale theory.

A little notation goes a long way in martingale theory. A fixed probability
space(2, ¥, P) sits in the background. The key new ingredients are:

(i) a subsefl of the extended real lin&;

(i) a filtration {JF; : t € T}, that is, a collection of sub-sigma-fields &ffor
which 35 € J; if s < t;

(iii) a family of integrable random variablgs«; : t € T} adaptedto the filtration,
that is, X; is F;-measurable for eachin T.
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The setT has the interpretation of time, the sigma-figidhas the interpretation
of information available at time,tand X; denotes some random quantity whose
value X;(w) is revealed at time.

Definition. A family of integrable random variablgs<; : t € T} adapted to a
filtration {F; : t € T} is said to be anartingale (for that filtration) if

(MG) Xs = P(X; | Fs) for all s <t.
Equivalently, the random variables should satisfy
(MGY PXsF =PX;F forall F e F5, all s < t.

REMARK. Often the filtration is fixed throughout an argument, or the particular
choice of filtration is not important for some assertion about the random variables. In
such cases it is easier to talk about a martingXle: t € T} without explicit mention
of that filtration. If in doubt, we could always work with thfditration!natural ,
F: = o{Xs : s < t}, which takes care of adaptedness, by definition.

Analogously, if there is a need to identify the filtration explicitly, it is convenient
to speak of a martingal& X;, &) : t € T}, and so on.

Property (MG) has the interpretation th4f is the best predictor foX; based
on the information available at time The equivalent formulation (MG)s a
minor repackaging of the definition of the conditional expectaltoX; | Fs). The
Fs-measurability ofXs comes as part of the adaptation assumption. Approximation
by simple functions, and a passage to the limit, gives another equivalence,

(MG)” PXsZ = PX;Z for all Z € Mpga(Fs), all s < t,

where Mpqq(Fs) denotes the set of all bounde@;-measurable random variables.

The formulations (MG)and (MG) have the advantage of removing the slippery
concept of conditioning on sigma-fields from the definition of a martingale. One
could develop much of the basic theory without explicit mention of conditioning,
which would have some pedagogic advantages, even though it would obscure one
of the important ideas behind the martingale concept.

Several of the desirable properties of martingales are shared by families of
random variables for which the defining equalities (MG) and (M&¢ relaxed to
inequalities. | find that one of the hardest things to remember about these martingale
relatives is which name goes with which direction of the inequality.

Definition. A family of integrable random variablgs{; : t € T} adapted to a
filtration {F; : t € T} is said to be aubmartingale(for that filtration) if it satisfies
any (and hence all) of the following equivalent conditions:

(subMG) Xs < P(X¢ | Fs) forall s <t, almost surely

(subMG} PXsF < PX:F forall F € Fs, all s < t.

(subMGY PXsZ < PXZ for all Z e M;(F), all s < t,

The family is said to be aupermartingale(for that filtration) if {(—X; :t € T} is
a submartingale. That is, the analogous requirements (superMG), (superdh@)
(superMG}) reverse the direction of the inequalities.
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REMARK. It is largely a matter of taste, or convenience of notation for particular
applications, whether one works primarily with submartingales or supermartingales.

For most of this Chapter, the index setwill be discrete either finite or equal
to N, the set of positive integers, or equal to one of

No:={0}UN or N:=NU/{oo} or Np:={0}UNU {oo}.

For some purposes it will be useful to have a distinctively labelled first or last element
in the index set. For example, if a limK,, := lim,cy X, can be shown to exist, it is
natural to ask whetheiX, : n € N} also has sub- or supermartingale properties. Of
course such a question only makes sense if a corresponding sigmazfieddists.
If it is not otherwise defined, | will také&,, to be the sigma-field (U .o Fi).
Continuous time theory, wher€ is a subinterval ofR, tends to be more
complicated than discrete time. The difficulties arise, in part, from problems
related to management of uncountable families of negligible sets associated with
uncountable collections of almost sure equality or inequality assertions. A nontrivial
part of the continuous time theory deals with sample path properties, that is, with
the behavior of a proces%;(w) as a function oft for fixed w or with properties
of X as a function of two variables. Such properties are typically derived from
probabilistic assertions about finite or countable subfamilies of{ ¥ag random
variables. An understanding of the discrete-time theory is an essential prerequisite
for more ambitious undertakings in continuous time—see Appendix E.
For discrete time, the (MGproperty becomes

PX.F =PXyF forall F e F,, alln < m.

It suffices to check the equality fon = n + 1, with n € Ny, for then repeated
appeals to the special case extend the equality ton + 2, thenm = n+ 3, and so
on. A similar simplification applies to submartingales and supermartingales.

Example. Martingales generalize the theory for sums of independent random
variables. Let, &, ... be independent, integrable random variables igh = 0

for n > 1. DefineXp:=0 andX, =& +...+&,. The sequencé€X, : n e Np} is a
martingale with respect to the natural filtration, becauseFer F,_1,

P(Xn — Xp—1)F = (P&,) (PF) =0 by independence.

You could write F as a measurable function of, ..., Xn_1, or of &, ..., &1, if
you prefer to work with random variables.

Example. Let {X, :n e Ng} be a martingale and let be a convex function for
which each¥ (X,) is integrable. Theq¥(X,) : n € Ng} is a submartingale: the
required almost sure inequalitif,(¥ (X,) | Fn_1) > ¥(Xn_1), is a direct application
of the conditional expectation form of Jensen’s inequality.

The companion result for submartingales is: if the condexunction is
increasing, if{X,} is a submartingale, and if each(X,) is integrable, then
{W(Xy) : n e Np} is a submartingale, because

P(W(Xn) | Fn-1) z V(P(Xn | Fn-1) z W (Xn-1).
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Two good examples to remember:{K,} is a martingale and eack, is square
integrable ther{X?} is a submartingale; and {fX,} is a submartingale thefX;} is
also a submartingale.

Example. Let {X, : n e Np} be a martingale written as a sum of increments,
Xn = Xo+&1+...+&. Not surprisingly, thgg;} are calledmartingale differences
Eachg, is integrable and (&, | Fn-1) = 0 forne Ng.

A new martingale can be built by weighting the increments ugireglictable
functions{H, : n € N}, meaning that eacli, should be ar,_;-measurable
random variable, a more stringent requirement than adaptedness. The value of the
weight becomes known before tinme it is known before it gets applied to the next
increment.

If we assume that eacH,&, is integrable then the sequence
Yn = Xo+ Hié1+ ...+ Hnén
is both integrable and adapted. It is a martingale, because
PHi& F =P(Xi — Xi—)(Hi F),

which equals zero by a simple generalization of (MG)Use Dominated Conver-
gence to accommodate integraldg If {X, : n € Np} is just a submartingale, a
similar argument shows that the new sequence is also a submartingale, provided the
predictable weights are also nonnegative.

Example. SupposeX is an integrable random variable af@; : t € T} is a
filtration. DefineX; ;= P(X | ;). Then the family{X; : t € T} is a martingale with
respect to the filtration, because ok t,

P(XF)=P(XF) if Fe%
=P(XsF) if Feds
(We have just reproved the formula for conditioning on nested sigma-fields.)

Example. Every sequencéX, : n € Ng} of integrable random variables adapted to

a filtration {F,, : n € Ng} can be broken into a sum of a martingale plus a sequence of
accumulated conditional expectations. To establish this fact, consider the increments
& = Xn — Xn_1. Eachg, is integrable, but it need not have zero conditional
expectation givert,_1, the property that characterizes martingale differences.
Extraction of the martingale component is merely a matter of recentering the
increments to zero conditional expectations. Defipe= P(&, | F,_1) and

Mn = Xo+ (61 —n1) + ...+ (& — 1)
An ::n1+...+nn.

Then X, = M, + An, with {M,} a martingale andA,} a predictable sequence.

Often {A,} will have some nice behavior, perhaps due to the smoothing
involved in the taking of a conditional expectation, or perhaps due to some other
special property of thgX,}. For example, if{X,} were a submartingale thg
would all be nonnegative (almost surely) af,} would be an increasing sequence
of random variables. Such properties are useful for establishing limit theory and
inequalities—see Exampleis> for an illustration of the general method.
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REMARK. The representation of a submartingale as a martingale plus an
increasing, predictable process is sometimes calledDibeb decomposition The
corresponding representation for continuous time, which is exceedingly difficult to
establish, is called th®oob-Meyer decomposition

Stopping times

The martingale property requires equalitis;F = PX;F, fors <t andF € F.
Much of the power of the theory comes from the fact that analogous inequalities
hold whens andt are replaced by certain types of random times. To make sense
of the broader assertion, we need to define objects suéh asd X, for random
timesrt.

Definition. A random variabler taking values inT = T U {co} is called a
stopping timefor a filtration{F; :t € T} if {t <t} € F, foreacht inT.

In discrete time, withT = Ny, the defining property is equivalent to
{t=n}eF, for eachn in N,
becausgr < n} = J,_,{r =i} and{r =n} = {r < n}{r <n-1)°
Example. Let {X, :n e Np} be adapted to a filtratiofF, : n € Np}, and letB
be a Borel subset dk. Definet(w) := inf{n : X,(w) € B}, with the interpretation

that the infimum of the empty set equalec. That is,7(w) = +o0 if X, () ¢ B
for all n. The extended-real-valued random variablis a stopping time because

{t<n}= Ui<n{xi eBleF, forneN.

It is called thefirst hitting time of the setB. Do you see why it is convenient to
allow stopping times to take the value?

If i corresponds to the information available up to timéow should we
define a sigma-fieldf; to correspond to information available up to a random
time t? Intuitively, on the part of2 wherer =i the sets in the sigma-fieldf,
should be the same as the sets in the sigma-figldThat is, we could hope that

(Flr=i}:FeJ.)=(F{t=il:Fed} foreachi.

These equalities would be suitable as a definitioFpin discrete time; we could
defineJ; to consist of all thosé= in F for which

Flr=i}led for all i € Np.

For continuous time such a definition could become vacuous if all the{setst}

were negligible, as sometimes happens. Instead, it is better to work with a definition
that makes sense in both discrete and continuous time, and which is equivalent
to <10> in discrete time.

Definition. Lett be a stopping time for a filtratiof#, : t € T}, taking values in
T := T U{oo}. If the sigma-fieldT ., is not already defined, take it to lbe(Uict Tt).
The prez sigma-field¥, is defined to consist of alF for which F{t <t} € & for
allteT.
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The class¥, would not be a sigma-field if were not a stopping time: the
propertyQ € F, requires{tr <t} € F; for all t.

REMARK. Notice thatF, € F,, (becauseF{r < oo} € F, if F € F,), with

equality whent = co. More generally, ifr takes a constant valug, thenJ, = F;.

It would be very awkward if we had to distinguish between random variables taking
constant values and the constants themselves.

<12> Example. The stopping timer is measurable with respect &, because, for
eacha e Rt andt e T,

{t=afr=t}={r =a At} €TFon S F.

That is, {t < «} € F, for all « € R*, from which theJF,-measurability follows by
the usual generating class argument. It would be counterintuitive if the information
O corresponding to the sigma-fiet did not include the value taken hyitself.

<13> Example. Supposer andr are both stopping times, for which < t always.
ThenF, € J, because

Flr<t}=(Flo =t}){r <t} forallteT,
O and both sets on the right-hand side aremeasurable i € F,.

<14> Exercise. Show that a random variable is F,-measurable if and only iZ {r <t}
is F.-measurable for all in T.
SoLuTIiON: For necessity, writeZ as a pointwise limit off,-measurable simple
functions Z,,, then note that eack,{r < t} is a linear combination of indicator
functions of F;-measurable sets.

For sufficiency, it is enough to show thef > o} € F, and{Z < —a} € F, for
eacha € R*. For the first requirement, note thg > a}{r <t} = {Z{r <t} > o},
which belongs tdF; for eacht, becausez{r <t} is assumed to b&;-measurable.
O Thus{Z > a} € F,. Argue similarly for the other requirement.

The definition of X, is almost straightforward. Given random variables
{X; :t € T} and a stopping time, we should defineX, as the function taking
the valueX;(w) whent(w) = t. If T takes only values ifT there is no problem.
However, a slight embarrassment would occur whén) = oo if co were not
a point of T, for then X, (w) need not be defined. In the happy situation when
there is a natural candidate fot,,, the embarrassment disappears with little fuss;
otherwise it is wiser to avoid the difficulty altogether by working only with the
random variableX,{t < oo}, which takes the value zero whenis infinite.

Measurability of X, {t < oo}, even with respect to the sigma-field requires
further assumptions about tfi¥;} for continuous time. For discrete time the task is
much easier. For example, {iK, : n € Np} is adapated to a filtratioff, : n € Ng},
andr is a stopping time for that filtration, then

Xcfr <oo){r <t} =) Xifi =1 <t}.
ieNg

Fori > t theith summand is zero; for < t it equals Xj{r = i}, which is
Fi-measurable. The&,-measurability ofX.{t < oo} then follows by Exercise<14>
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The next Exercise illustrates the use of stopping times and tfields they
define. The discussion does not directly involve martingales, but they are lurking in
the background.

Exercise. A deck of 52 cards (26 reds, 26 blacks) is dealt out one card at a time,
face up. Once, and only once, you will be allowed to predict that the next card will
be red. What strategy will maximize your probability of predicting correctly?
SoruTtionN: Write R for the event{ith card is regl Assume all permutations of

the deck are equally likely initially. Writé, for theo-field generated byr,, ..., R,.

A strategy corresponds to a stopping timéhat takes values if0, 1, ..., 51}: you
should try to maximizé’R, ..

Surprisingly,PR, ;1 = 1/2 for all such stopping rules. The intuitive explanation
is that you should always be indifferent, given that you have observed cards
1,2, ..., 7, between choosing card+ 1 or choosing card 52. That is, it should
be true thatP(R,41 | F;) = P(Rs2 | F;) almost surely; or, equivalently, that
PR,.1F = PRs,F for all F € F;; or, equivalently, that

PR 1F{t =k} = PRs2F{t =k} forall F e 3, andk=0,1,..., 51.

We could then deduce th@R, . ; = PRs; = 1/2. Of course, we only need the
caseF = @, but I'll carry along the generdr as an illustration of technique while
proving the assertion in the last display. By definitionJof

F{r =k} = F{r <k—-1}%7 <k} € Fx.

That is, F{r = k} must be of the form{(Ry, ..., R«) € B} for some Borel
subsetB of RX. Symmetry of the joint distribution oRy, ..., Rs2 implies that the
random vectonRy, ..., R«, Re+1) has the same distribution as the random vector
(Ry, ..., R«, Rs2), whence

PR1{(Ry, ..., R € B} = PRe2{(Ry, ..., Ro) € B}.
See Sectior8 for more about symmetry and martingale properties.

The hidden martingale in the previous ExerciseXjs the proportion of red
cards remaining in the deck aftarcards have been dealt. You could check the
martingale property by first verifying th&(R, 1 | Fn) = X, (an equality that is
obvious if one thinks in terms of conditional distributions), then calculating
(52—Nn—DP (Xng1 | Fn) =P ((52— ) Xn — Roy1 | Fn) = (52— n) Xy —P(Ryg1 | Fn).
The problem then asks for the stopping time to maximaize

PRy1 =Y P (Rlr =i})
=YL P(Xi{r =i}) becausdr =i} € 7
=PX,.
The martingale property tells us thaXqy = PX; fori = 1,...,51. If we could
extend the equality to randoim by showing thatPX, = PXg, then the surprising
conclusion from the Exercise would follow.

Clearly it would be useful if we could always assert titat, = PX, for
every martingale, and every pair of stopping times. Unfortunately (Or should | say
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fortunately?) the result is not true without some extra assumptions. The simplest
and most useful case concerns finite time sets. thHkes values in a finite sat, and

if each X; is integrable, thenX,| < 3 ,.r IX;|, which eliminates any integrability
difficulties. For an infinite index set, the integrability ¥, is not automatic.

Stopping Time Lemma. Supposes andt are stopping times for a filtration
{(Fi :t € T}, with T finite. Suppose both stopping times take only valuegd in

Let F be a set inF, for which o(w) < t(w) whenw € F. If {X; :t € T} is

a submartingale, thefiX,F < PX.F. For supermartingales, the inequality is
reversed. For martingales, the inequality becomes an equality.

Proof. Consider only the submartingale case. For simplicity of notation, suppose
T =1{0,1,..., N}. Write eachX,, as a sum of incrementX,, = Xg+ & + ...+ &,.
The inequalityc < 7, on F, lets us write

X.F — X, F = (on+ PORL gr}ng> —~ (on+ > i §J}F$i)

1<i<N 1<i<N

= Y {o<i=<1lF&.
1<i<N
Note that{o <i < 7}F = ({o <i — 1}F){r <i — 1}° € Fi_1. The expected value
of each summand is nonnegative, by (subMG)

REMARK. If o < t everywhere, the inequality for afF in F, implies that
Xo < IP(X, | S’U) almost surely. That is, the submartingale (or martingale, or
supermartingale) property is preserved at bounded stopping times.

The Stopping Time Lemma, and its extensions to various cases with infinite
index sets, is basic to many of the most elegant martingale properties. Results for
a general stopping time, taking values inN or Ny, can often be deduced from
results fort A N, followed by a passage to the limit &6 tends to infinity. (The
random variabler A N is a stopping time, becauge A N < n} equals the whole
of @ whenN < n, and equalgr < n} whenN > n.) As Problem[1] shows, the
finiteness assumption on the index 3ets not just a notational convenience; the
Lemma<i6> can fail for infinite T.

It is amazing how many of the classical inequalities of probability theory can
be derived by invoking the Lemma for a suitable martingale (or submartingale or
supermartingale).

Exercise. Leté&, ..., &y be independent random variables (or even just martingale
increments) for whiclPg = 0 andIP’gi2 < oo for eachi. Define§ (=& +... +§.
Prove the maximal inequaliti{olmogorov inequality for eache > 0,

IEI’{lmai(l S| > e} <PS% /e
<I<

SoLuTION: The random variable¥; := 52 form a submartingale, for the natural
filtration. Define stopping times = N ando := firsti such thatS| > ¢, with the
convention that = N if |§| < € for everyi. Why is o a stopping time? Check
the pointwise bound,

e2{max|S| > €} = €2{X, > €2} < X,.
|
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What happens in the case whenequalsN becausgS| < ¢ for everyi? Take
expectations, then invoke the Stopping Time Lemma (With= Q) for the
submartingalgX;}, to deduce

e?P{max|S| > ¢} < PX, < PX, =P},
|

as asserted.

Notice how the Kolmogorov inequality improves upon the elementary bound
P{|Sy| > €} < PS/€2. Actually it is the same inequality, applied ® instead
of Sy, supplemented by a useful bound 88 made possible by the submartingale
property. Kolmogorov (1928) established his inequality as the first step towards a
proof of various convergence results for sums of independent random variables.
More versatile maximal inequalities follow from more involved appeals to the
Stopping Time Lemma. For example, a strong law of large numbers can be proved
quite efficiently (Bauer 1981, Section 6.3) by an appeal to the next inequality.

Exercise. Let 0= S, ..., Sy be a martingale withy; := P(§ — S_1)? < oo for

eachi. Lety1 > y» > ... > yn be nonnegative constants. Prove thajek-Rényi
inequality:
2,
P{lrggggaf.ISI > 1} < ) v
1<i<N
SoLuTioN: Definedi = 0(S,...,S). Write P, for P(- | F;). Definen; =
v2S —y2 .S, andA; i=Pi_1;. By the Doob decomposition from Example>,
the sequenc®/y ;= Z!‘zl(ni — Aj) is a martingale with respect to the filtrati¢s; };
andy2S = (A1 + ...+ Ax) + M. Define stopping times = 0 and
firsti such thaty|S| > 1,
N if %S| < 1 for alli.

The main idea is to bound eaadty +. ..+ Ak by a single random variabl&, whose

expectation will become the right-hand side of the asserted inequality.
ConstructA from the martingale differences .= § —S_pfori =1,...,N.

For each, use the fact thag_; is F;_; measurable to bound the contributionAf:

Ai=Pi_1 ()4232 — J/iz,lSz,l)
= %P1 (5i2 +25S.1+ Sz_1> - 2.5

= Viz]P)ifl‘i:i2 + ZMZS—lpi—lgi + (Viz - Vizfl)szfl-

The middle term on the last line vanishes, by the martingale difference property,
and the last term is negative, becagge< 1.2 ;. The sum of the three terms is less
than the nonnegative quantip/P(£? | Fi_1), and

A=Yy WPIE = Y A
for eachk, as required.
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The asserted inequality now follows via the Stopping Time Lemma:
IP’{miaXJflISI > 1} =P{y:IS| > 1}

< Py?g
=PM, +P(A1+...+ A;)
<PA,

becauseA;1 + ...+ A, < A andPM, =PM, = 0.

The method of proof in Example18> is worth remembering; it can be used
to derive several other bounds.

Convergence of positive supermartingales

In several respects the theory for positive (meaning nonnegative) supermartingales
{Xn : n € Np} is particularly elegant. For example (Probldgj), the Stopping
Time Lemma extends naturally to pairs of unbounded stopping times for positive
supermartingales. Even more pleasantly surprising, positive supermartingales
converge almost surely, to an integrable limit—as will be shown in this Section.
The key result for the proof of convergence is an elegant lemma (Dubins’s
Inequality) that shows why a positive supermartingalg} cannot oscillate between
two levels infinitely often.
For fixed constants and 8 with 0 < o < 8 < oo define increasing sequences
of random times at which the process might drop betoar rise aboves:

op:=inf{i >0: X <a}, 71 = inf{i > 01 : Xj > B},
oo =1inf{i > 111 Xj < a}, o = inf{i > o0 : X > B},
and so on, with the convention that the infimum of an empty set is takefoas

VALY

1 T 2 T‘2
Because thdgX;} are adapted t¢F;}, eacho; andr is a stopping time for the

filtration. For example,
{r1 <k} ={Xi <, X; = p for somei < j <k},

which could be written out explicitly as a finite union of events involving only
Xo, «+ .y Xk

When 7y is finite, the segmentX; : ox <i < ¢} is called thekth upcrossing
of the interval {, ] by the procesgX, : n € Ng}. The event{ty < N} may
be described, slightly informally, by saying that the process completes atkleast
upcrossings ofd, 8] up to time N.
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Dubins’s inequality. For a positive supermartingal€X,, ¥,) : n € No} and
constant®) < o < B < oo, and stopping times as defined above,

P{r < 0o} < (/B¢  fork e N.

Proof. Choose, and temporarily hold fixed, a finite positive intejerDefine tp
to be identically zero. Fok > 1, using the fact thakX,, > g whent < oo and
Xs < @ Whenoy < oo, we have
P (B{tk = N} 4+ Xn{tc > N}) < PXgan

< PXgenN Stopping Time Lemma

<P (afox < N} + Xn{ok > N}),
which rearranges to give

BP{mc < N} < aP{ok < N} +PXy ({ok > N} — {c > N})
< aP{rw_1 < N} becausey_1 < ok < ¢ and Xy > 0.

That is, o
P{tx < N} < EP{rk,l < N} for k > 1.

Repeated appeals to this inequality, followed by a passage to the lifit-asoo,
leads to Dubins’s Inequality.

REMARK. When 0= o < B8 we havelP{r; < oo} = 0. By considering a
sequence of3 values decreasing to zero, we deduce that on thgogek oo} we
must haveX,, = 0 for all n > o;. That is, if a positive supermartingale hits zero
then it must stay there forever.

Notice that the main part of the argument, befdtevas sent off to infinity,
involved only the variableXo, ..., Xn. The result may fruitfully be reexpressed as
an assertion about positive supermartingales with a finite index set.

Corollary. Let{(X,,F,) :n=0,1,..., N} be a positive supermartingale with a
finite index set. For each pair of constabts: a < B < oo, the probability that the
process completes at le&stipcrossings is less than/p)~.

Theorem. Every positive supermartingale converges almost surely to a nonnega-
tive, integrable limit.

Proof. To prove almost sure convergence (with possibly an infinite limit) of the
sequenced X,}, it is enough to show that the event

D = {w: limsupX,(w) > liminf X,(w)}
is negligible. Decompos® into a countable union of events
Do s = {limsupX, > B > « > liminf Xp},

with «, g ranging over all pairs of rational numbers. @p; we must havey < oo
for everyk. ThusPD, s < («/B)* for everyk, which forcesPD, s = 0, andPD = 0.

The sequenc&, converges toX,, := liminf X, on the setD®. Fatou’s lemma,
and the fact thaPX, is nonincreasing, ensure that, is integrable.

Exercise. Suppose(§} are independent, identically distributed random vari-
ablesg with P{§ = +1} = p andP{§ = —1} = 1 — p. Define the partial
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sumsS = 0and§ =& +...+ & fori > 1. Forls < p < 1, show that
P{§ = —1 for at least oné } = (1 — p)/p.

SoLuTioN: Consider a fixedp with 1/2 < p < 1. Defined = (1 — p)/p. Define
r=inf{i e N: § = —1}. We are trying to show thak{r < co} = 6. Observe that
X, = 65 is a positive martingale with respect to the filtratip = o (¢1, . . ., &):
by independence and the equalitg® = 1,

PX,F = Po59S1F = PO5PX, 1F = PX,_1F for F in F,_1.

The sequencéX. .} is a positive martingale (Problefs]). It follows that there
exists an integrable&,, such thatX,., — X, almost surely. The sequen¢g,}
cannot converge to a finite limit becauss — S,_1| = 1 for all n. On the set where
T = oo, convergence of % to a finite limit is possible only ifS, — oo and#S — 0.
Thus,

Xean = 07z < 00} +0{r = o0}  almost surely

The bounds &< X, ., < 6! allow us to invoke Dominated Convergence to deduce
that 1= PX,\n — 07 1P{r < 00}.
Monotonicity of P{t < oo} as a function ofp extends the solution tp = 1/2.

The almost sure limitX,, of a positive supermartingalegX,} satisfies the
inequality liminfPX, > PX.,, by Fatou. The sequend®X,} is decreasing. Under
what circumstances do we have it converging?®.,,? Equality certainly holds if
{Xn} converges tdX,, in L1 norm. In fact, convergence of expectations is equivalent
to L! convergence, because

P|Xn — Xoo| = P(Xoo — Xn) " + P(Xoo — Xn)~
= 2P(Xoo — Xn)T — (PXse — PXp).

On the right-hand side the first contribution tends to zero, by Dominated Conver-
gence, becaus¥,, > (X, — Xp)™ — 0 almost surely. (I just reproved Scheffé’s
lemma.)

Corollary. A positive supermartingaléX,} converges irL! to its limit X, if
and only ifPX, — PXx.

Example. Female bunyips reproduce once every ten years, according to a fixed
offspring distributionP on N. Different bunyips reproduce independently of each
other. What is the behavior of the numhgy of nth generation offspring from Lucy
bunyip, the first of the line, as gets large? (The proce$Z, : n € Np} is usually
called abranching procesg

Write u for the expected number of offspring for a single bunyip. If reproduc-
tion went strictly according to averages, thiéh generation size would equal'.
Intuitively, if 4 > 1 there could be an explosion of the bunyip population; i 1
bunyips would be driven to extinction; jf = 1, something else might happen. A
martingale argument will lead rigorously to a similar conclusion.

Given Z,_1 = k, the size of thenth generation is a sum & independent
random variables, each with distributiéh Perhaps we could writ&,, = Zizz”il Eni
with the {&,; 11 = 1,..., Z,_1} (conditionally) independently distributed like. |
have a few difficulties with that representation. For example, wheggsidefined?



150 Chapter 6:  Martingale et al.

Just on{Z,_1 > 3}? On all of Q? Moreover, the notation invites the blunder of
ignoring the randomness of the range of summation, leading to an absurd assertion
thatIE”ZiZ:”f &ni equaIsZizzni1 P&y = Z,_1u. The corresponding assertion for an
expectation conditional o&Z,_; is correct, but some of the doubts still linger.

It is much better to start with an entire familg, : n € N, i € N} of
independent random variables, each with distributtynthen definezp = 1 and
Zn =) jnnill < Zn-1} for n > 1. The random variabl&, is measurable with
respect to the sigma-field, = o{&; : k < n, i € N}, and, almost surely,

P(Zn | Fn-1) = ) PGaili < Zooa} | Fa)
ieN
= Z{i < Zn_1)P(ni | Fno1) becauseZ,_; is F,_1-measurable
ieN
= Z{i < Zn_1}P(&ni) because,; is independent off,_1
ieN
= Zn_1/4.
If <1, the{Z,} sequence is a positive supermartingale with respect t¢Jhe
filtration. By Theorem<22>, there exists an integrable random variaBlg with
Z, — Z,, almost surely.

A sequence of integerd,(w) can converge to a finite limk only if Z,(w) =k
for all n large enough. Ik > 0, the convergence would imply that, with nonzero
probability, only finitely many of the independent evefi}s, _, & # k} can occur.
By the converse to the Borel-Cantelli lemma, it would follow tRaf_, & = k
almost surely, which can happen onlyRf{1} = 1. In that caseZ, = 1 for all n.

If P{1} < 1, thenZ, must converge to zero, with probability one,.if< 1. The
bunyips die out if the average number of offspring is less than or equal to 1.

If « > 1 the situation is more complex. B{0} = O the population cannot
decrease and,, must then diverge to infinity with probability one. H{0} > O the
convex functiong(t) := P*t* must have a unique valuewith 0 < # < 1 for which
g(®) = 6: the strictly convex functiorh(t) := g(t) —t hash(0) = P{0} > 0 and
h(1) = 0, and its left-hand derivativ®*(xt*~1 — 1) converges tqu — 1 > 0 ast
increases to 1. The sequen@é"} is a positive martingale:

P(ezn | Fn) = {Zn1 =0} + ZP (9&n,1+w+§n,k{zn_l =k} | ?n—l)

k>1

={Zn-1= 0} + ) _(Zn1 = KIP@ET 0 | T )
k>1

=Y {Zn-1=kKig®)"

keNp
= g(H)%t =gt becausey(9) = 6.

The positive martingal¢g?"} has an almost sure limity. The sequencéz,} must
converge almost surely, with an infinite limit whéd = 0. As with the situation
when p < 1, the only other possible limit foZ, is 0, corresponding taV = 1.
Because O< #% < 1 for everyn, Dominated Convergence and the martingale
property giveP{W = 1} = lim,,_, . P8% = PA%0 = 4.
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In summary: On the setD = {W = 1}, which has probabilityy, the bunyip
population eventually dies out; db¢, the population explodes, that &, — oo.

It is possible to say a lot more about the almost sure behavior of the pratgss
whenu > 1. For example, the sequendg = Z,/u" is a positive martingale,
which must converge to an integrable random variableOn the sefX > 0}, the
process{Z,} grows geometrically fast, likg". On the setD we must haveX = 0,
but it is not obvious whether or not we might haXe= O for some realizations
where the process does not die out.

There is a simple argument to show that, in fact, eitkees 0 almost surely
or X > 0 almost surely orD. With a little extra bookkeeping we could keep
track of the first generation ancestor of each bunyip in the later generations. If we
write )’ for the members of theth generation descended from tih (possibly
hypothetical) member of the first generation, then= Y, Z\"'{j < Z1}. The
zV, for j = 1,2, ..., are independent random variables, each with the same
distribution asZ,_1, and each independent @f. In particular, for eaclj, we have
ZV/un-1 — X@ almost surely, where th&(, for j = 1,2,..., are independent
random variables, each distributed like and

X =3y XD{j < 21} almost surely

Write ¢ for P{X = 0}. Then, by independence,
4 ——TT¢ () — O — oK
P{X=0| zl_k}_]_[izlsz{xJ =0} = ¢,

whenceg =}, . ¢*P{Z1 = k} = g(¢). We must have eithep = 1, meaning that
X = 0 almost surely, or elsg¢ = 9, in which caseX > 0 almost surely orD¢.
The latter must be the caseXf is nondegenerate, that is,{X > 0} > 0, which
happens if and only iP* (xlog(1 + x)) < co—see Problenfl14].

Convergence of submartingales

Theorem<22> can be extended to a large class of submartingales by means of the
following decomposition Theorem, whose proof appears in the next Section.

Krickeberg decomposition. Let({S, : n € No} be a submartingale for which
sup,PSt < oo. Then there exists a positive martingdh,} and a positive
supermartingaléX,} such thats, = M,, — X,, almost surely, for each.

Corollary. A submartingale wittsup, PSF < oo converges almost surely to an
integrable limit.

For a direct proof of this convergence result, via an upcrossing inequality for
supermartingales that are not necessarily nonnegative, see Pridillem

REMARK. Finiteness of sypPS' is equivalent to the finiteness of SUB|S|,

becausdS,| = 25" — (S —S;) and by the submartingale proped(S-—S;) = PS,
increases witm.

Example. (Section 68 of Lévy 1937.) LetM, : n € Np} be a martingale such
that M, — Mp_1] < 1, for all n, and Mg = 0. In order thatM,(w) converges to a
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finite limit, it is necessary that sy, (w) be finite. In fact, it is also a sufficicient
condition. More precisely

{w: Iirr1n M (w) exists as a finite limjt= {w : SUPMp(w) < oo} almost surely

To establish that the right-hand side is (almost surely) a subset of the left-hand side,
for a fixed positiveC definet as the firstn for which thatM,, > C, with t = c©

when sup M, < C. The martingaleX,, := M., is bounded above by the constant

C + 1, because the increment (if any) that pusiMgsaboveC cannot be larger

than 1. In particular, sy@PX; < oo, which ensures thatX,} converges almost
surely to a finite limit. On the seisup, M, < C} we haveM, = X, for all n, and
henceM, also converges almost surely to a finite limit on that set. Take a union
over a sequence @ values increasing teo to complete the argument.

REMARK. Convergence ofM,(w) to a finite limit also implies that
sup, IMh(w)| < oo. The result therefore contains the surprising asssertion that,
almost surely, finiteness of syMn(w) implies finiteness of sydM,(w)|.

As a special case, consider a sequeg of events adapted to a filtratida,}.
The martingaleM, := Y ; (A — P(A | Fi_1)) has increments bounded in absolute
value by 1. For almost ab, finiteness ofy", _{w € Ay} implies sup Mp(w) < oo,
and hence convergence of the sum of conditional probabilities. Argue similarly for
the martingalg—M,} to conclude that

{w:> 01 An <ol ={w:Y 21 P(Ay | Fno1) < 00} almost surely,

a remarkable generalization of the Borel-Cantelli lemma for sequences of independent
events.

Proof of the Krickeberg decomposition

It is easiest to understand the proof by reinterpreting the result as assertion about
measures. To each integrable random variablen (2, F, P) there corresponds a
signed measurg defined onF by uF := P(XF) for F € F. The measure can
also be written as a difference of two nonnegative measuteand .~, defined by
utF=P(X*F)andu~F :=P(X"F), for f € .

By equivalence (MG) a sequence of integrable random varialjlés: n € No}
adapted to a filtratio, : n € Np} is a martingale if and only if the corresponding
sequence of measurgs,} on F has the property

MnH\% = ““|5fn for eachn,

where, in generaly|9 denotes the restriction of a measurdo a sub-sigma-
field . Similarly, the defining inequality (subMGjor a submartingaleyn.1F =
P(Xni1F) = PX,F =: unF for all F € F,, is equivalent to

pniily = pnl;  for eachn.
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Now consider the submartingal&, : n € Ng} from the statement of the
Krickeberg decomposition. Define an increasing functionaM*(F) — [0, oo] by

Af == limsupP(S f) for f e M*(9).
n

Notice thatil = limsup, PSt, which is finite, by assumption. The functional also
has a property analogous to absolute continuity? fif= 0 thenif = 0.

Write A for the restriction ofs to M+ (Fy). For f in M*(Fy), the submartingale
property for{S} ensures thaPS' f increases witm for n > k. Thus

<31> amfi=af = Iinm P(Stf) = supP(S ) if feMH(TF.
n>k

The increasing functionaly is linear (because linearity is preserved by limits), and
it inherits the Monotone Convergence property fr@nfor functions in M™* (Fy)
with 0 < f; 1 f,
supi fi = supsupP (S fi) = supsupP (Si fi) = supP (S/ f) = A« f.
i i n>k n>k i n>k
It defines a finite measure dfy that is absolutely continuous with respect[Ptgk.
Write M for the corresponding density W™ (2, Fy).
The analog of<29> identifies {Mx} as a nonnegative martingale, because
M)y, = Ay = . Moreover,M¢ > § almost surely because

PMi{Mk < S} = MMk < ST} > PSH{M < ST

the last inequality following from<31> with f := {Mx < S§7}. The random variables
Xk := My — & are almost surely nonnegative. Also, fere F,

PXF = PMyF — PSF > PMy,1F — PSiaF = PXciaF,

becausd My} is a martingale andS} is a submartingale. It follows thgi,} is a
supermartingale, as required for the Krickeberg decomposition.

*6. Uniform integrability

Corollary <27> gave a sufficient condition for a submartingdhé,} to converge
almost surely to an integrable limK,,. If {X,} happens to be a martingale, we
know that X, = P(Xn.m | Fn) for arbitrarily largem. It is tempting to leap to the
conclusion that

?
<32> Xn =P(Xe | Fn),

as suggested by a purely formal passage to the limimasnds to infinity. One
should perhaps look before one leaps.

<33> Example. Reconsider the limit behavior of the partial suf&} from Exam-
ple <23> but with p = 1/3 and# = 2. The sequenc&, = 2% is a positive
martingale. By the strong law of large numbe®s/n — —1/3 almost surely, which
gives §, — —oo almost surely anK,, = 0 as the limit of the martingale. Clearly
O X, is not equal tdP(Xy | Fn).
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REMARK.  The branching process of Example25> with u = 1 provides
another case of a nontrivial martingale converging almost surely to zero.

As you will learn in this Section, the condition for the validity efz2>
(without the cautionary question mark) imiform integrability. Remember that
a family of random variable$z; : t € T} is said to be uniformly integrable
if supcr PIZil{|Z:| > M} - 0 asM — oo. Remember also the following
characterization of.! convergence, which was proved in Sect8.

<34> Theorem. Let{Z,:n e N} be a sequence of integrable random variables. The
following two conditions are equivalent.

(i) The sequence is uniformly integrable and it converges in probability to a
random variabl& ,,, which is necessarily integrable.

(i) The sequence converges &t norm, P|Z, — Z.,| — 0O, to an integrable
random variableZ ..

The necessity of uniform integrability foes2> follows immediately from a
general property of conditional expectations.

<35> Lemma. For a fixed integrable random variable the family of all conditional
expectationgP(Z | 9) : G a sub-sigma-field off} is uniformly integrable.

Proof. Write Zg for P(Z | §). With no loss of generality, we may suppose
Z > 0, becauseZg| < P(|Z| | §). Invoke the defining property of the conditional
expectation, and the fact theZq > M?} € G, to rewritePZg{Zg > M?} as

PZ{Zs > M?} < MP{Zg > M?} +PZ{Z > M}.

The first term on the right-hand side is less thai*Z;/M? = PZ/M, which tends
O to zero asM — oo. The other term also tends to zero, becarss integrable.

More generally, ifX is an integrable random variable af@, : n € No} is a
filtration then X, := P(X | F,) defines a uniformly integrable martingale. In fact,
every uniformly integrable martingale must be of this form.

<36> Theorem. Every uniformly integrable martingaleX, : n € No} converges almost
surely and inC! to an integrable random variab¥e,, , for which X, = P(X« | F).
Moreover, ifX, := P(X | F,) for some integrabléX thenX., = P(X | F), Where
Foo 1= 0 (UnenTn).

Proof.  Uniform integrability implies finiteness of syf|X,|, which lets us deduce
via Corollary <27> the almost sure convergence to the integrable IXait Almost
sure convergence implies convergence in probability, which uniform integrability
and Theoremk34> strengthen tal! convergence. To show that, = P(Xs | F),

fix an F in F,. Then, for all positivem,

IPXooF — PXnF| < P Xoo — Xntml + [PXnemF — PXpF].

The L1 convergence makes the first term on the right-hand side converge to zero
asm tends to infinity. The second term is zero for all positimeby the martingale
property. ThusPX,F = PX,F for everyF in F,.
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If P(X | Fn) = Xn = P(X | Fn) thenPXF = PX,F for eachF in &,. A
generating class argument then gives the equality fdf &l F,, which characterizes
O the F-measurable random variab}e, as the conditional expectatidi(X | F,).

REMARK. More concisely: the uniformly integrable martingalgs, : n € N}
are precisely those that can be extended to martingafgs: n € N}. Such a
martingale is sometimes said to biesed on the right

<37> Example. Classical statistical models often consist of a parametric family
P = {Py : 6 € ®} of probability measures that define joint distributions of infinite
sequences = (w1, wy, ...) Of possible observations. More formally, eaéhcould
be thought of as a probability measure BN, with random variables(; as the
coordinate maps.
For simplicity, suppose® is a Borel subset of a Euclidean space. The
parameter is said to beconsistently estimatedby a sequence of measurable

functions®,, = 9, (wo, . .., wy) if
<38> Pp{|0n— 0| > €} > 0 for eache > 0 and eacly in ©.

A Bayesian would define a joint distributiof := = ® P for 6 and w by
equipping® with a prior probability distributionr. The conditional distributions
Qnt given the random vectorg, ;= (Xo, ..., X,) are called posterior distributions.
We could also regaré,,(-) := Qn1,)(-) as random probability measures on the
product space. An expectation with respectrtg is a version of a conditional
expectation given the the sigma-fiel] := o (Xq, ..., Xp).

A mysterious sounding result of Doob (1949) asserts that mere existence of
some consistent estimator férensures that the,, distributions will concentrate
around the right value, in the delicate sense thatrf@most allg, the =,, measure
of each neighborhood &f tends to one fo?y-almost allw.

The mystery dissipates when one understands the role of the consistent
estimator. When averaged out over the prior, properss implies (via Dominated
Convergence) tha®{(0, ) : [0h(w) — 0] > €} — 0. A Q-almost surely convergent
subsequence identifiésas anF,,-measurable random variablgw), on the product
space, up to & equivalence. That i) = r(w) a.e. [Q].

Let U be a countable collection of open sets generating the topology. of
That is, each open set should equal the union ofliikgets that it contains. For
eachU in U, the sequence of posterior probabilities,{6 € U} = Q{6 e U | T}
defines a uniformly integrable martingale, which conver@eslmost surely to

QI €U |Fu} =6 €U}  becausdd e U} = {r(w) € U] € T

Cast out a sequence @f-negligible sets, leaving a s& with QE = 1 and
O me{@eU}—{@eU}forallU inl, all (9, w) € E, which implies Doob’s result.

*7. Reversed martingales

Martingale theory gets easier when the index®Bdtas a largest element, as in the
caseT = —Np := {—n : n € Ng}. Equivalently, one can reverse the “direction of
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time,” by considering families of integrable random variab{®s : t € T} adapted
to decreasing filtrations families of sub-sigma-field&s; : t € T} for which G5 2 G;
whens < t. For such a family, it is natural to defirg@, := N7 G if it is not
already defined.

Definition. Let {X, : n € Ng} be a sequence of integrable random variables,
adapted to a decreasing filtrati¢f, : n € No}. Call {(Xn, Gn) : n € Ng} areversed
supermartingaleif P(Xn | Sni1) < Xny1 almost surely, for each. Define reversed
submartingales and reversed martingales analogously.

That is, {(Xn, 9n) : n € Np} is a reversed supermartingale if and only if
{(X_n, G-n) : n € —Np} is a supermartingale. In particular, for each fixgd the
finite sequenceXy, Xn_1, ..., Xo IS a supermartingale with respect to the filtration
9N € 9n-1 € ... € Yo
Example. If {G, : n € Np} is a decreasing filtration andl is an integrable
random variable, the sequendg = P(X | §,) defines a uniformly integrable,
(Lemma <35>) reversed martingale.

The theory for reversed positive supermartingales is analogous to the theory
from Section3, except for the slight complication that the sequefi¥, : n € Ng}
might be increasing, and therefore it is not automatically bounded.

Theorem. For every reversed, positive supermarting&hé,, S,) : n € No}:

(i) there exists arko, in M (2, Go,) for which X,, — X, almost surely;

(i) P(Xn | Se0) 1 Xoo @lmost surely;

(iii) P|Xn — X! — O if and only if sug, PX, < oo.
Proof. The Corollary<21> to Dubins’s Inequality bounds biy/8)* the probability
that Xy, Xn_1, ..., Xo completes at least upcrossings of the intervak] 8], no
matter how large we takdl. As in the proof of Theoremx22>, it then follows
that P{limsupX, > 8 > « > liminf X,} = 0, for each pair O< « < 8 < o0, and
henceX, converges almost surely to a nonnegative lidit, which is necessarily
G.-measurable.

I will omit most of the “almost sure” qualifiers for the remainder of the proof.
Temporarily abbreviat®(- | G,) to P,(-), for n € No, and write Z,, for P, X,. From
the reversed supermartingale propefty;1Xn < Xni1, and the rule for iterated
conditional expectations we get

Zn = IP>o<> xn = IP>oo (]P)n+lxn) = HDoo Xn+l = Zn+1‘

Thus Z, + Z, :=limsup, Z,, which is §,-measurable.

For (ii) we need to showZ,, = X, almost surely. Equivalently, as both
variables are5,.-measurable, we need to sh@®(Z,.G) = P (X, G) for eachG
in Go,. For such &G,

P(Z5G) = sUp\ey, P(ZnG) Monotone Convergence
= sup, P(X,G) definition of Z,, := Py, Xp
= SUR, SUR,ny P ((Xn AM)G)  Monotone Convergence, for fixed
= SUR, SUR P ((Xn AMG).
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The sequencéX, A m : n € Ng} is a uniformly bounded, reversed positive
supermartingale, for each fixed. ThusP ((X, A m)G) increases witm, and, by
Dominated Convergence, its limit equ&t$(X. A m)G). Thus

P(Z5G) = sUp, P (Xoo AMG) =P (XG),

the final equality by Monotone Convergence. Assertion (ii) follows.

Monotone Convergence and (ii) imply thaX., = sup,PX,. Finiteness of
the supremum is equivalent to integrability ¥f,. The sufficiency in assertion (iii)
follows by the usual Dominated Convergence trick (also known as Scheffé’s lemma):

P|Xoo — Xn| = 2P (Xoo — Xn)t — (PXo — PXp) — O.

For the necessity, just note that 44 limit of a sequence of integrable random
variables is integrable.

The analog of the Krickeberg decomposition extends the result to reversed
submartingaleg(Xn, Gn) : n € Np}. The sequenceM, = ]P’(Xg | Gy is a
reversed positive martingale for whid#t, > P(Xp | Sn) > X, almost surely. Thus

Xn = My — (M, — X)) decomposesX, into a difference of a reversed positive
martingale and a reversed positive supermartingale.

Corollary. Every reversed submartingaleX,, Gn) : n € No} converges almost
surely. The limit is integrable, and the sequence also converges ibttBense, if
inf, PX, > —oo.

Proof. Apply Theorem<a41> to both reversed positive supermartingals, — Xn}
and{M,}, noting that supPM, = PXJ and supP (M, — X,) = PX{ — inf, PX,.

Corollary. Every reversed martingal€X,, Sn) : n € Ng} converges almost surely,
and inL?*, to the limit X, = P(Xo | Go0), WhereGu, := NnenySn-

Proof. The identification of the limit as the conditional expectation follows from the
facts thatP(XoG) = P(X,G), for eachn, and|P(X,G) —P(X«G)| < P|Xn—Xs| — O,
for eachG in G.

Reversed martingales arise naturally from symmetry arguments.

Example. Let{ :i € N} be a sequence of independent random elements taking
values in a seX equipped with a sigma-field. Suppose each induces the same
distribution P on A, that is,Pf () = Pf for each f in M (X, A). For eachn
define theempirical measureP, , (or just P,, if there is no need to emphasize the
dependence om) on X as the probability measure that places massat each of
the pointsé;(w), . .., &(w). Thatis, Py, f :=n"1 Y icien [ ().

Intuitively speaking, knowledge oP, tells us everything about the values
&1(w), ..., &n(w) except for the order in which they were produced. Conditionally
on P,, we know that; should be one of the points supportiRg but we don’t know
which one. The conditional distribution @f given P, should put probabilityn—1
at each support point, and it seems we should then have

P(fE) | P =Pt

REMARK. Here | am arguing, heuristically, assumiri®y concentrates om
distinct points. A similar heuristic could be developed when there are ties, but there
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is no point in trying to be too precise at the moment. The problem of ties would
disappear from the formal argument.

Similarly, if we knew allP, for i > n then we should be able to locatgw)
exactly fori > n+ 1, but the values of1(w), ..., &(w) would still be known only
up to random relabelling of the support points®f The new information would
tell us no more abou; than we already knew fror®,. In other words, we should
have

2
P(f¢1) 1Gn) =...=P(fn) | Gn) = Pnf wheregy := o (Py, Poy1,...),
which would then give

1 n-1 1 n-1
P(Poaf |G =——5> P(F&) ) =—"7> Pf=Pif.
i=1 i=1

That is, {(P, f, Sn) : n € N} would be a reversed martingale, for each fixed
It is possible to defineg, rigorously, then formalize the preceeding heuristic
argument to establish the reversed martingale property. | will omit the details,
because it is simpler to replagg by the closely related-symmetric sigma-field,,,
to be defined in the next Section, then invoke the more general symmetry arguments
(Example <s0>) from that Section to show thdtP, f, Sn) : n € N} is a reversed
martingale for eactP-integrablef.
Corollary <43> ensures thaP,f — P(f(&1) | 8x) almost surely. As you will
see in the next Section (Theorems1>, to be precise), the sigma-fie$d, is trivial—
it contains only events with probability zero or one—ah | S.,) = PX, almost
surely, for each integrable random variatde In particular, for eacHP-integrable
function f we have
fE)+...+ F(&n)
n
The special cas& := R andP|&1| < oo and f (x) = x recovers the Strong Law of
Large Numbers (SLLN) for independent, identically distributed summands.
In statistical problems it is sometimes necessary to prove a uniform analog of
the SLLN (a USLLN):

Ap = sup|P,fy — Pfy| - 0 almost surely
[

=P, f > Pf almost surely

where{f, : € ®} is a class ofP-integrable functions ofl. Corollary <41> can
greatly simplify the task of establishing such a USLLN.

To avoid measurability difficulties, let me consider only the case wigerie
countable. WriteX, o for P, f, — Pfy. Also, assume that thenvelopeF := sup, | fo|
is P-integrable, so thaPA, < P(P,F + PF) =2PF < o0.

For each fixed?, we know that{(Xn 4, Sn) : n € N} is a reversed martingale,
and hence

IED(An | 8n+1) =P (Sup|xn,0| | Sn-+—1> = SUP’P (Xn,e | Sn-&-l)‘ = An-&-l'
0 0

That is, {(An, 8p) : n € N} is a reversed submartingale. From Corollaryi>,
Ap converges almost surely to&,-measurable random variable,,, which by
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the triviality of 85, (Theorem<s1> again) is (almost surely) constant. To prove

the USLLN, we have only to show that the constant is zero. For example, it

would suffice to showPA, — 0, a great simplification of the original task. See
O Pollard (1984, Section 11.5) for details.

*8. Symmetry and exchangeability

The results in this Section involve probability measures on infinite product spaces. You

might want to consult Sectich8 for notation and the construction of product measures.
The symmetry arguments from Exampleis> did not really require an

assumption of independence. The reverse martingale methods can be applied to

more general situations where probability distributions have symmetry properties.
Rather than work with random elements of a spéceA), it is simpler to deal

with their joint distribution as a probability measure on the product sigma-fli€ld

of the product spac&”, the space of all sequences;= (x1, X2, ...), on X. We

can think of the coordinate mags(x) ;= x as a sequence of random elements

of (X, .A), when it helps.

<47> Definition. Call a one-to-one mag from N onto itself ann-permutation if
(i) =i fori > n. Write R(n) for the set of alln! distinct n-permutations. Call
UnenR(N) the set of alffinite permutationsof N. Write S, for the map, front(N
back onto itself, defined by

ST(X].’ X2’ LR XI"I’ . ') = (Xn(l)a XJT(Z)a L] X?T(n)a .- )
= (X (1) X2 (2)s - - - » Xa(n)> Xntls - - ) if 7 € R(n).
Say that a functiom on XN is n-symmetricif it is unaffected alln-permutations,
that is, ifh, (x) ;= h(S;x) = h(x) for everyn-permutationr.
<48> Example. Let f be a real valued function o¥. Then the functiond;" ; f(x;)

is n-symmetric for everym > n, and the function limsyp, . >, f(x)/mis
n-symmetric for evenyn.

Let g be a real valued function of ® X. Then g(xi, X2) + g(Xo, X1) iS
2-symmetric. More generallyy_;_;_;., 9(X, X;) is n-symmetric for everym > n.

For every real valued functiofi on XV, the function

1 1
FOO = >t = - Y e Xw @ s X Xt L - )

T weR(n) T weR(n)
O is n-symmetric.

<49> Definition. A probability measuré® on A" is said to beexchangeableif it is
invariant underS, for every finite permutatior, that is, ifPh = Ph, for everyh
in M+ (XN, ANy and every finite permutation. Equivalently, undelP the random
VeCtor (§x1). §x(2) - - - » £&=my) has the same distribution &si. &2, .. .. &), for every
n-permutationr, and evern.

The collection of all sets iM" whose indicator functions ane-symmetric
forms a sub-sigma-field, of AY, the n-symmetric sigma-field The $,,-measurable
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functions are thoséN-measurable functions that anesymmetric. The sigma-fields
{8n : n e N} form a decreasing filtration oX", with §; = AN,

<50> Example. SupposeP is exchangeable. Let be a fixedP-integrable function
on XN. Then a symmetry argument will show that

1
P(f |Sn)zm Z fr(X).

T meR(n)
The function—call it F(x)—on the right-hand side is-symmetric, and hence
Sp-measurable. Also, for each bound&gsmeasurable functioid,

P(fX)HX) =P (f;H;) for all =, by exchangeability
=P(f,H) for all = in R(n)
1
= ;m)mfn<x)H<x>> =P(FOOHX).

As a special case, if depends only on the first coordinate then we have

1
Pfoa) |8 == D f () = Paf,

" weR(n)
O whereP, denotes the empirical measure, as in Exampie-.

When the coordinate maps are independent under an exchangeable
symmetric sigma-field,, becomes trivial, and conditional expectations (such as
P (f(x1) | 8)) reduce to constants.

<51> Theorem. (Hewitt-Savage zero-one law) ¥ = PN, the symmmetric sigma-
field S, is trivial: for eachF in S, eitherPF =0 or PF = 1.

Proof. Write h(x) for the indicator function ofF, a set inS,,. By definition,
h, = h for every finite permutation. Equiff™ with the filtrationF,, = o{x; :i < n}.
Notice thatF,, := 0 (UpenFn) = AN = 81.

The martingaleY, := P(F | F,) converges almost surely ®&F | F,) = F,
and also, by Dominated Convergen&gh — Y, — 0.

The F,-measurable random variabig may be written ad,(xq, ..., xn), for
someA"-measurabléh, on X". The random variabl&, := hp(Xh41, ..., X2n) IS
independent of,, and it too converges iA? to h: if = denotes the ri-permutation
that interchanges andi + n, for 1 <i < n, then, by exchangeability,

PIh(X) — Zn|? = Pl (X) — hn (Xens)s - - - » Xe2m) 12 = PIR(X) = Ya|> — 0.
The random variableg, andY, are independent, and they both convergé #dP)-
norm toF. Thus
0= lim P|Y, - Z,? = lim (]P’Ynz — 2(PY,) (PZy) + Pzg) = PF — 2(PF)% + PF.

O It follows that eitherPF = 0 or PF = 1.

In a sense made precise by Probl§i], the product measureB" are the
extreme examples of exchangeable probability measures—they are the extreme
points in the convex set of all exchangeable probability measured onA
celebrated result of de Finetti (1937) asserts that all the exchangeable probabilities
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can be built up from mixtures of product measures, in various senses. The simplest
general version of the de Finetti result is expressed as an assertion of conditional
independence.

<52> Theorem. Under an exchangeable probability distributidron (XN, AY), the
coordinate maps are conditionally independent given the symmetric sigma-field
That is, for all setsA\ in A,

IP)(X]_G A]_ ..... Xme Amlsoo):]P)(Xle Al|800) X..X]P)(Xme Am | SOO)
almost surely, for everyn.

Proof. Consider only the typical case whare= 3. The proof of the general case
is similar. Write f; for the indicator function ofA;. AbbreviateP(. | 8,) to P, for
n e N. From Example<so>, for n > 3,

N3 (Pn f10x1)) (Pn f2062)) (Pn fa(xa)) = D {1 <, j, k < n}f106) fa (%)) fa(xe).-
On the right-hand side, there amén — 1)(n— 2) triples of distinct subscript§, j, k),
leaving O(n?) of them with at least one duplicated subscript. The latter contribute
a sum bounded in absolute value by a multiplen&ifthe former appear in the sum
that Example<so> identifies asP, (f1(x1) f2(x2) fa(x3)). Thus

—D(n-2
(B 110x0)) (B f(x2)) (B Fa(x3)) = %Pn (F10x0) F2(x2) fa(xa)) + O,

By the convergence of reverse martingales, in the limit we get

(Pos f1(X1)) (Poo f2(X2)) (Poo f3(X3)) = Pos ( f1(X1) f2(X2) fa(Xa))
O the desired factorization.

When conditional distributions exist, it is easy to extract from Theoramn-
the representation @ as a mixture of product measures.

<53> Theorem. LetA be the Borel sigma-field of a separable metric spfacé etP be
an exchangeable probability measure/oh under which the distributio® of x; is
tight. Then there exists ah,.-measurable map into [0, 1]~, with distributionQ,
for which conditional distribution§P; : t € T} exist, andP; = PN, a product
measure, fof) almost allt.

Proof. Leté& :={E; :i € N} be a countable generating class for the sigma-figld
stable under finite intersections and containiigFor each let T (x) be a version
of P(x1 € Ej | 8o). By symmetry, T (x) is also a version of (xj €k | 800), for
every j. DefineT as the map fromXY into T := [0, 1]V for which T(x) hasith
coordinateT; (X).

The joint distribution ofx; and T is a probability measur&€ on the product
sigma-field ofX x 7, with marginalsP andQ. As shown in Sectiod of Appendix F,
the assumptions oR ensure existence of a probability kerriet= {P, : t € T} for
which

Pg(x1, T) = I*'g(x, t) = Q"'P*g(x, t) for all g in M*(X x 7).
In particular, by definition off; and theS.,-measurability ofT,
Q' (tht) =P (Th(M)) =P ({x1 € E}h(T)) = Q' (hH R E)
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for all h in M*(T), which implies thatP.E; =t; a.e. [Q], for eachi.
For every finite subcollectiofiE;, ..., E; } of & Theorem<s2> asserts

P(x1 € Eij,....% € Ei | 8o} = ]‘[;’ (P € Eij | 8o} = ]‘[j”:lTij(x) a.e. P,

which integrates to

A routine generating class argument completes the proof.

Problems

Follow these steps to construct an example of a martingalpand a stopping
time t for which PZg # PZ,{r < o0}.

(i) Let &, &2, ... be independent, identically distributed random variables with
P& = +1) = 13 andP{g = —1} = 2. DefineXg=0andX; ;=& +... + &
and z; := 2%, fori > 1. Show that{Z;} is a martingale with respect to an
appropriate filtration.

(i) Define =z :=inf{i : X; = —1}. Show thatr is a stopping time, finite almost
everywhere. Hint: Use SLLN.

(i) Show thatPZy, > PZ,. (Should you worry about what happens on the
set{t = o0}?)

Let = be a stopping time for the natural filtration generated by a sequence of random
variables{Z, : n € N}. Show that¥, = o{Z;.n : n € N}.

Let {(Z,,Fn) : n € No} be a (sub)martingale andbe a stopping time. Show that
{(Z:any Fn) : n € Np} is also a (sub)martingale. Hint: Fa¥ in F,_1, consider
separately the contributions RZ,,,, F andPZ,_1),. F from the regionqr < n—1}
and{r > n}.

Let  be a stopping time for a filtratioff; : i € No}. For an integrable random
variable X, defineX; :=P(X | F;). Show that

P(X | F,) = Z{r =i}X = X, almost surely
iENo
Hint: Start with X > 0, so that there are no convergence problems.

Let {(Xn, Fn) : n € Np} be a positive supermartingale, and déetand t be stopping
times (not necessarily bounded) for whish< 7 on a setF in F,. Show that
PX,{oc < oo}F > PX.{t < oo}F. Hint: For each positive integeN, show
that Fy = F{o < N} € F,,n. Use the Stopping Time Lemma to prove that
PX,AnFn = PX AnFn = PX. {t < N}F, then invoke Monotone Convergence.
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For each positive supermartingdleX,, F,) : n € Np}, and stopping times < z,
show thatP (X, {t < o0} | F,) < X,{o < oo} almost surely.

(Kolmogorov 1928) Lety, ..., & be independent random variables with = 0
and|&| < 1 for eachi. DefineX; ==& +...+& andV, = IP’XiZ. For eache > 0
show thatP {maxSn [Xi| < e} < (14 €)?/V,. Note the direction of the inequalities.
Hint: Define a stopping time for which V,, {max -, |Xi| < €} < V;{r = n}. Show
thatPV, = PX? < (1+¢)2.

(Birnbaum & Marshall 1961) Let & Xg, X3, ... be nonnegative integrable random
variables that are adapted to a filtratith}. Suppose there exist constastswith
0 <6 <1, for which

(%) P(Xi | Fi—1) = 6 Xi_1 fori > 1.
LetCy > Cy > ... > Cyy1 = 0 be constants. Prove the inequality

N
() P{maxC;X; > 1) < ;(ci — 61CiDPXi,

by following these steps.

(i) Interpret &) to mean that there exist nonnegati, 1-measurable random
variablesY;_; for which P(X; | F_1) = Yi_1 + 6; Xj_1 almost surely. Put
Zi =X —Yi_1 — 6; Xj_1. Show thatC; X; < Ci_1Xj_1 + C;Zi + C;Y;_1 almost
surely.
(i) Deduce thatCiX; < M; + A, where M; is a martingale withMg = 0 and
A=Y CYia
(iii) Show that the left-hand side of inequality«) is less thanPC, X, for an

appropriate stopping time, then rearrange the sum fBA to get the asserted
upper bound.

(Doob 1953, page 317) SuppoSe ..., S is a nonnegative submartingale, with
PS® < oo for some fixedp > 1. Letq > 1 be defined byp~t+q~1 = 1. Show that
P (max<n S) < qPPSY, by following these steps.
(i) Write M, for max-n, §. For fixedx > 0, and an appropriate stopping tine
apply the Stopping Time Lemma to show that

XP{Mn > x} < PS{S;, > x} < PS{Mn > x}.
(i) Show thatPXP = [;° pxP~!P{X > x}dx for each nonnegative random
variable X.
(i) Show thatPM® < qPS,MP 2.
(iv) Bound the last product using Holder’s inequality, then rearrange to get the
stated inequality. (Any problems with infinite values?)

Let (2, F,IP) be a probability space such thatis countably generatedthat is,
F = o0{By, By, ...} for some sequence of seiB;}. Let u be a finite measure o,
dominated byP. Let F, :=o{By,..., By}
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(i) Show that there is a partitiom, of Q into at most 2 disjoint sets front, such
that eachF in F, is a union of sets from,,.
(i) Define F,-measurable random variabl&g by: for w € A € 7y,
_ [uA/PA if PA> 0,
Xn(@) = {O otherwise.
Show thatPX,F = uF for all F in F,,.
(iif) Show that(Xn, ) is a positive martingale.
(iv) Show that{X,} is uniformly integrable. Hint: What do you know about
ui{Xn = M}?

(V) Let X denote the almost sure limit of tH&,}. Show thatPX..F = uF for
all F in . That is, show thaK,, is a density foru with respect taP.

[11] Let {(X,, Fn) : n € Ng} be a submartingale. For fixed constants< 8 (not
necessarily nonnegative), define stopping times 11 < o2 < ..., as in SectiorB.
Establish the upcrossing inequality,

P (XN — Ol)Jr

k(B — o)
for each positive integeN, by following these steps.

P{rg < N} <

(i) Show thatZ, = (X, — a)" is a positive submartingale, with,, = 0 if o; < oo
andZ, > g —«a if 5 < o0.

(i) For eachi, show thatZ, .y — ZsAn > (B — o){zi < N}. Hint: Consider

separately the three casgs> N, o; < N < 7;, andt; < N.

(iii) Show that—PZ,,\n +PZ, AN > k(B — a)P{x < N}. Hint: Take expectations
then sum over in the inequality from part (ii). Use the Stopping Time Lemma
for submartingales to provBZ, \n — PZ,.,An < 0.

(iv) Show thatPZ, .y <PZy =P (Xn —a)™.
[12] Reprove Corollary<27> (a submartingal¢ X, : n € Np} converges almost surely to
an integrable limit if supPX+ < oo) by following these steps.
(i) For fixeda < B, use the upcrossing inequality from Probl¢h] to prove that
P{liminf, X, <a < B8 < limsup, Xp} =0
(i) Deduce that{X,} converges almost surely to a limit random variablehat
might take the values-co.
(iii)y Prove thatP|X,| < 2PX+ — PX; for everyn. Deduce via Fatou's lemma that
P|X| < oo.
[13] Suppose the offspring distribution in Exampies> has finite mear. > 1 and
varianceo 2.
(i) Show that vafZ,) = o?u"1 + p2var(Z,_1).
(i) Write X, for the martingalez,,/u". Show that supvar(X,) < co.

(iii) Deduce thatX,, converges both almost surely and4a to the limit X, and
hencePX = 1. In particular, the limitX cannot be degenerate at O.
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Suppose the offspring distributidd from Example<2s> has has finite mean > 1.
Write X, for the martingalez,/u", which converges almost surely to an integrable
limit random variableX. Show that the limitX is nondegenerate if and only if the
condition

(XroaX) P* (xlog(1l + x)) < oo,

holds. Follow these steps. Wriig, for P* (x{x < M”}) andP, () for expectations
conditional on7,.

(i) Show that}" (u — un) = P* (x doalx > M”}), which converges to a finite limit
if and only if (XLocX) holds.

(i) Define X, 1= ™" Y, &niléni < u"Mi < Zn_1}. Show thatP,_1 X, = unXn_1/1t

almost surely. Show also that

X —Xn =30 nir Xn = Xno1) = 30 1 (X — Xno1) almost surely.
(iii) Show that, for some constart;,
Yo P(Xn # Xn} < Y u"IP{X > u"} < Cip < 00.

Deduce thad", (5{” — Xn) converges almost surely to a finite limit.

(iv) Write var,_; for the conditional variance correspondingite 1. Show that
vam_1(Xn) = w2 Y i < Zn_1}van-1 (niféni < 1").
Deduce, via (ii), that

S 2
Y a P (Xn — unXn-1/p)” < 3oy " IPXE{X < u"} < Cop < 00,

for some constan€,. Conclude thaty", (>~<n — unXn-1/p) is a martingale,
which converges both almost surely andgih

(v) Deduce from (iii), (iv), and the fact thaf  (X» — Xn_1) converges almost
surely, that) ", Xn_1(1 — un/p) converges almost surely to a finite limit.

(vi) SupposeP{X > 0} > 0. Show that there exists am for which both
Yo Xno1(@)(1 — pn/n) < oo and limXy_1(w) > 0. Deduce via (i) that
(XLoaX) holds.

(vii) Suppose(XLocX) holds. From (i) deduce that (3", Xn_1(1 — pn/1)) < oo.
Deduce via (iv) thath(>~<n — Xn_1) converges inC!. Deduce via (ii) that
PX > P(Xn + 20 n1(Xn — Xn-1)) = 1 —0(1) asN — oo, from which it
follows that X is nondegenerate. (In fad® X, — X| — 0. Why?)

Let {& :i € N} be a martingale difference array for whidh, ., P (giz/iz) < 0.

(i) Define X, := Y ;&/i. Show that supPX2 < oco. Deduce thatXn(w)
converges to a finite limit for almost adl.

(ii) Invoke Kronecker’s lemma to deduce that! 3" | & — 0 almost surely.

Suppose X, : n € N} is an exchangeable sequence of square-integrable random
variables. Show that coXy, X2) > 0. Hint: EachX; must have the same vari-
ance,V; each pairX;, X;, fori # j, must have the same covarian€e, Consider

var (Y~ _, X;) for arbitrarily largen.
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(Hewitt & Savage 1955, Section 5) L& be exchangeable, in the sense of
Definition <49>.

() Let f be a boundedA"-measurable function ok". DefineX = f(xg,..., Xn)
andY = f (Xh41, ..., X2n). Use Problenjl16] to show thatP(XY) > (PX) (PY),
with equality if P is a product measure.

(i) SupposeP = a1Q1 + a2Q2, with o > 0 andas + a2 = 1, whereQ; andQ, are
distinct exchangeable probability measures. Edbie a bounded, measurable
function on some(" for which g := Q1 f (X1, ..., Xn) # Qo f (X1, ..., Xn) = uo.
Define X andY as in part (i). Show thaP(XY) > (PX) (PY). Hint: Use strict
convexity of the square function to show thafu? + apu3 > (a1 + a2u2)?.
Deduce that? is not a product measure.

(iii) SupposeP is not a product measure. Explain why there exist&Ean A" and
a bounded measurable functigrfor which

P ({Z € E}g(Xn+1, Xn42, - - )) # (P{z € ED) (PO(Xn11, Xn42, .. .))

wherez ;= (Xq, ..., Xn). Definea =P{z € E}. Show that O< « < 1. For each
h e MmN, AN), define

Q1h =P ({z € E}h(Xny1, Xny2, .. ) /o1,
th =P ({Z € Ec}h(XI'H*l? Xn+2, B )) /(l - Ol).

Show thatQ, and@Q, correspond to distinct exchangeable probability measures
for whichP = «Q1 + (1 — «)Q2. That is,P is not an extreme point of the set
of all exchangeable probability measures.4th

Notes

De Moivre used what would now be seen as a martingale method in his solution
of the gambler’s ruin problem. (Apparently first published in 1711, according

to Thatcher (1957). See pages 51-53 of the 1967 reprint of the third edition of
de Moivre (1718).)

The namemartingaleis due to Ville (1939). vy (1937, chapter VIII), expand-
ing on earlier papers (Lévy 1934, 1983 93%), had treated martingale differences,
identifying them as sequences satisfying his conditien He extended several
results for sums of independent variables to martingales, including Kolmogorov’s
maximal inequality and strong law of large numbers (the version proved in Sec-
tion 4.6), and even a central limit theorem, extending Lindeberg’s method (to be
discussed, for independent summands, in Sectign He worked with martingales
stopped at random times, in order to have sums of conditional variances close to
specified constant values.

Doob (1940) established convergence theorems (without using stopping times)
for martingales and reversed martingales, calling them sequences with “prégerty
He acknowledged (footnote to page 458) that the basic maximal inequalities were
“implicit in the work of Ville” and that the method of proof he used “was used by
Levy (1937), in a related discussion.” It was Doob, especially with his stochastic
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processes book (Doob 1953—see, in particular the historical notes to Chapter VII,
starting page 629), who was the major driving force behind the recognition of
martingales as one of the most important tools of probability theory. ®eg'd”
comments in Note Il of the 1954 edition of Lévy (1937) and in Lévy (1970,
page 118) for the relationship between his work and Doob’s.

| first understood some martingale theory by reading the superb text of
Ash (1972, Chapter 7), and from conversations with Jim Pitman. The material
in Section3 on positive supermartingales was inspired by an old set of notes for
lectures given by Pitman at Cambridge. | believe the lectures were based in part
on the original French edition of the book Neveu (1975). | have also borrowed
heavily from that book, particularly so for Theoremse> and <41>. The book
of Hall & Heyde (1980), although aimed at central limit theory and its application,
contains much about martingales in discrete time. Dellacherie & Meyer (1982,
Chapter V) covered discrete-time martingales as a preliminary to the detailed study
of martingales in continuous time.

Exercise<15> comes from Aldous (1983, p. 47).

Inequality <20> is due to Dubins (1966). The upcrossing inequality of
Problem[11] comes from the same paper, slightly weakening an analogous
inequality of Doob (1953, page 316). Krickeberg (1963, Section 1V.3) established
the decomposition (Theorem26>) of submartingales as differences of positive
supermartingales.

| adapted the branching process result of Probjesh, which is due to Kesten
& Stigum (1966), from Asmussen & Hering (1983, Chapter II).

The reversed submartingale part of Example> comes from Pollard (1981).
The zero-one law of Theoremsi> for symmetric events is due to Hewitt &
Savage (1955). The study of exchangeability has progressed well beyond the
original representation theorem. Consult Aldous (1983) if you want to know more.
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