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Chapter 6

Martingale et al.

SECTION 1 gives some examples of martingales, submartingales, and supermartingales.
SECTION 2 introduces stopping times and the sigma-fields corresponding to “information

available at a random time.” A most important Stopping Time Lemma is proved,
extending the martingale properties to processes evaluted at stopping times.

SECTION 3 shows that positive supermartingales converge almost surely.
SECTION 4 presents a condition under which a submartingale can be written as a

difference between a positive martingale and a positive supermartingale (the Krickeberg
decomposition). A limit theorem for submartingales then follows.

SECTION *5 proves the Krickeberg decomposition.
SECTION *6 defines uniform integrability and shows how uniformly integrable martingales

are particularly well behaved.
SECTION *7 show that martingale theory works just as well when time is reversed.
SECTION *8 uses reverse martingale theory to study exchangeable probability measures on

infinite product spaces. The de Finetti representation and the Hewitt-Savage zero-one
law are proved.

1. What are they?

The theory of martingales (and submartingales and supermartingales and other
related concepts) has had a profound effect on modern probability theory. Whole
branches of probability, such as stochastic calculus, rest on martingale foundations.
The theory is elegant and powerful: amazing consequences flow from an innocuous
assumption regarding conditional expectations. Every serious user of probability
needs to know at least the rudiments of martingale theory.

A little notation goes a long way in martingale theory. A fixed probability
space(�, F, P) sits in the background. The key new ingredients are:

(i) a subsetT of the extended real lineR;

(ii) a filtration {Ft : t ∈ T}, that is, a collection of sub-sigma-fields ofF for
which Fs ⊆ Ft if s < t ;

(iii) a family of integrable random variables{Xt : t ∈ T} adaptedto the filtration,
that is, Xt is Ft -measurable for eacht in T .
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The setT has the interpretation of time, the sigma-fieldFt has the interpretation
of information available at time t, and Xt denotes some random quantity whose
value Xt (ω) is revealed at timet .

<1> Definition. A family of integrable random variables{Xt : t ∈ T} adapted to a
filtration {Ft : t ∈ T} is said to be amartingale (for that filtration) if

(MG) Xs =
a.s.

P(Xt | Fs) for all s < t.

Equivalently, the random variables should satisfy

(MG)′ PXsF = PXt F for all F ∈ Fs, all s < t.

Remark. Often the filtration is fixed throughout an argument, or the particular
choice of filtration is not important for some assertion about the random variables. In
such cases it is easier to talk about a martingale{Xt : t ∈ T} without explicit mention
of that filtration. If in doubt, we could always work with thefiltration!natural ,
Ft := σ {Xs : s ≤ t}, which takes care of adaptedness, by definition.

Analogously, if there is a need to identify the filtration explicitly, it is convenient
to speak of a martingale{(Xt ,Ft ) : t ∈ T}, and so on.

Property (MG) has the interpretation thatXs is the best predictor forXt based
on the information available at times. The equivalent formulation (MG)′ is a
minor repackaging of the definition of the conditional expectationP(Xt | Fs). The
Fs-measurability ofXs comes as part of the adaptation assumption. Approximation
by simple functions, and a passage to the limit, gives another equivalence,

(MG)′′ PXsZ = PXt Z for all Z ∈ Mbdd(Fs), all s < t,

whereMbdd(Fs) denotes the set of all bounded,Fs-measurable random variables.
The formulations (MG)′ and (MG)′′ have the advantage of removing the slippery
concept of conditioning on sigma-fields from the definition of a martingale. One
could develop much of the basic theory without explicit mention of conditioning,
which would have some pedagogic advantages, even though it would obscure one
of the important ideas behind the martingale concept.

Several of the desirable properties of martingales are shared by families of
random variables for which the defining equalities (MG) and (MG)′ are relaxed to
inequalities. I find that one of the hardest things to remember about these martingale
relatives is which name goes with which direction of the inequality.

<2> Definition. A family of integrable random variables{Xt : t ∈ T} adapted to a
filtration {Ft : t ∈ T} is said to be asubmartingale(for that filtration) if it satisfies
any (and hence all) of the following equivalent conditions:

Xs ≤ P(Xt | Fs) for all s < t, almost surely(subMG)

PXsF ≤ PXt F for all F ∈ Fs, all s < t.(subMG)′

PXsZ ≤ PXt Z for all Z ∈ M+
bdd(Fs), all s < t,(subMG)′′

The family is said to be asupermartingale(for that filtration) if {−Xt : t ∈ T} is
a submartingale. That is, the analogous requirements (superMG), (superMG)′, and
(superMG)′′ reverse the direction of the inequalities.
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Remark. It is largely a matter of taste, or convenience of notation for particular
applications, whether one works primarily with submartingales or supermartingales.

For most of this Chapter, the index setT will be discrete, either finite or equal
to N, the set of positive integers, or equal to one of

N0 := {0} ∪ N or N := N ∪ {∞} or N0 := {0} ∪ N ∪ {∞}.
For some purposes it will be useful to have a distinctively labelled first or last element
in the index set. For example, if a limitX∞ := limn∈N Xn can be shown to exist, it is
natural to ask whether{Xn : n ∈ N} also has sub- or supermartingale properties. Of
course such a question only makes sense if a corresponding sigma-fieldF∞ exists.
If it is not otherwise defined, I will takeF∞ to be the sigma-fieldσ (∪i <∞Fi ).

Continuous time theory, whereT is a subinterval ofR, tends to be more
complicated than discrete time. The difficulties arise, in part, from problems
related to management of uncountable families of negligible sets associated with
uncountable collections of almost sure equality or inequality assertions. A nontrivial
part of the continuous time theory deals with sample path properties, that is, with
the behavior of a processXt (ω) as a function oft for fixed ω or with properties
of X as a function of two variables. Such properties are typically derived from
probabilistic assertions about finite or countable subfamilies of the{Xt } random
variables. An understanding of the discrete-time theory is an essential prerequisite
for more ambitious undertakings in continuous time—see Appendix E.

For discrete time, the (MG)′ property becomes

PXnF = PXmF for all F ∈ Fn, all n < m.

It suffices to check the equality form = n + 1, with n ∈ N0, for then repeated
appeals to the special case extend the equality tom = n + 2, thenm = n + 3, and so
on. A similar simplification applies to submartingales and supermartingales.

<3> Example. Martingales generalize the theory for sums of independent random
variables. Letξ1, ξ2, . . . be independent, integrable random variables withPξn = 0
for n ≥ 1. DefineX0 := 0 andXn := ξ1 + . . . + ξn. The sequence{Xn : n ∈ N0} is a
martingale with respect to the natural filtration, because forF ∈ Fn−1,

P(Xn − Xn−1)F = (Pξn) (PF) = 0 by independence.

You could writeF as a measurable function ofX1, . . . , Xn−1, or of ξ1, . . . , ξn−1, if
you prefer to work with random variables.�

<4> Example. Let {Xn : n ∈ N0} be a martingale and let� be a convex function for
which each�(Xn) is integrable. Then{�(Xn) : n ∈ N0} is a submartingale: the
required almost sure inequality,P (�(Xn) | Fn−1) ≥ �(Xn−1), is a direct application
of the conditional expectation form of Jensen’s inequality.

The companion result for submartingales is: if the convex� function is
increasing, if{Xn} is a submartingale, and if each�(Xn) is integrable, then
{�(Xn) : n ∈ N0} is a submartingale, because

P (�(Xn) | Fn−1) ≥
a.s.

�(P(Xn | Fn−1) ≥
a.s.

�(Xn−1).
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Two good examples to remember: if{Xn} is a martingale and eachXn is square
integrable then{X2

n} is a submartingale; and if{Xn} is a submartingale then{X+
n } is

also a submartingale.�
<5> Example. Let {Xn : n ∈ N0} be a martingale written as a sum of increments,

Xn := X0 + ξ1 + . . .+ ξn. Not surprisingly, the{ξi } are calledmartingale differences.
Eachξn is integrable andP(ξn | Fn−1) =

a.s.
0 for n ∈ N

+
0 .

A new martingale can be built by weighting the increments usingpredictable
functions {Hn : n ∈ N}, meaning that eachHn should be anFn−1-measurable
random variable, a more stringent requirement than adaptedness. The value of the
weight becomes known before timen; it is known before it gets applied to the next
increment.

If we assume that eachHnξn is integrable then the sequence

Yn := X0 + H1ξ1 + . . . + Hnξn

is both integrable and adapted. It is a martingale, because

PHi ξi F = P(Xi − Xi −1)(Hi F),

which equals zero by a simple generalization of (MG)′′. (Use Dominated Conver-
gence to accommodate integrableZ.) If {Xn : n ∈ N0} is just a submartingale, a
similar argument shows that the new sequence is also a submartingale, provided the
predictable weights are also nonnegative.�

<6> Example. SupposeX is an integrable random variable and{Ft : t ∈ T} is a
filtration. DefineXt := P(X | Ft ). Then the family{Xt : t ∈ T} is a martingale with
respect to the filtration, because fors < t ,

P(Xt F) = P(X F) if F ∈ Ft

= P(XsF) if F ∈ Fs

(We have just reproved the formula for conditioning on nested sigma-fields.)�
<7> Example. Every sequence{Xn : n ∈ N0} of integrable random variables adapted to

a filtration {Fn : n ∈ N0} can be broken into a sum of a martingale plus a sequence of
accumulated conditional expectations. To establish this fact, consider the increments
ξn := Xn − Xn−1. Eachξn is integrable, but it need not have zero conditional
expectation givenFn−1, the property that characterizes martingale differences.
Extraction of the martingale component is merely a matter of recentering the
increments to zero conditional expectations. Defineηn := P(ξn | Fn−1) and

Mn := X0 + (ξ1 − η1) + . . . + (ξn − ηn)

An := η1 + . . . + ηn.

Then Xn = Mn + An, with {Mn} a martingale and{An} a predictable sequence.
Often {An} will have some nice behavior, perhaps due to the smoothing

involved in the taking of a conditional expectation, or perhaps due to some other
special property of the{Xn}. For example, if{Xn} were a submartingale theηi

would all be nonnegative (almost surely) and{An} would be an increasing sequence
of random variables. Such properties are useful for establishing limit theory and
inequalities—see Example<18> for an illustration of the general method.�
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Remark. The representation of a submartingale as a martingale plus an
increasing, predictable process is sometimes called theDoob decomposition. The
corresponding representation for continuous time, which is exceedingly difficult to
establish, is called theDoob-Meyer decomposition.

2. Stopping times

The martingale property requires equalitiesPXsF = PXt F , for s < t and F ∈ Fs.
Much of the power of the theory comes from the fact that analogous inequalities
hold whens and t are replaced by certain types of random times. To make sense
of the broader assertion, we need to define objects such asFτ and Xτ for random
timesτ .

<8> Definition. A random variableτ taking values inT := T ∪ {∞} is called a
stopping timefor a filtration {Ft : t ∈ T} if {τ ≤ t} ∈ Ft for eacht in T .

In discrete time, withT = N0, the defining property is equivalent to

{τ = n} ∈ Fn for eachn in N0,

because{τ ≤ n} = ⋃
i ≤n{τ = i } and {τ = n} = {τ ≤ n}{τ ≤ n − 1}c.

<9> Example. Let {Xn : n ∈ N0} be adapted to a filtration{Fn : n ∈ N0}, and letB
be a Borel subset ofR. Defineτ(ω) := inf{n : Xn(ω) ∈ B}, with the interpretation
that the infimum of the empty set equals+∞. That is,τ(ω) = +∞ if Xn(ω) /∈ B
for all n. The extended-real-valued random variableτ is a stopping time because

{τ ≤ n} =
⋃

i ≤n
{Xi ∈ B} ∈ Fn for n ∈ N0.

It is called thefirst hitting time of the setB. Do you see why it is convenient to
allow stopping times to take the value+∞?�

If Fi corresponds to the information available up to timei , how should we
define a sigma-fieldFτ to correspond to information available up to a random
time τ? Intuitively, on the part of� whereτ = i the sets in the sigma-fieldFτ

should be the same as the sets in the sigma-fieldFi . That is, we could hope that

{F{τ = i } : F ∈ Fτ } = {F{τ = i } : F ∈ Fi } for eachi .

These equalities would be suitable as a definition ofFτ in discrete time; we could
defineFτ to consist of all thoseF in F for which

<10> F{τ = i } ∈ Fi for all i ∈ N0.

For continuous time such a definition could become vacuous if all the sets{τ = t}
were negligible, as sometimes happens. Instead, it is better to work with a definition
that makes sense in both discrete and continuous time, and which is equivalent
to <10> in discrete time.

<11> Definition. Let τ be a stopping time for a filtration{Ft : t ∈ T}, taking values in
T := T ∪ {∞}. If the sigma-fieldF∞ is not already defined, take it to beσ (∪t∈TFt ).
The pre-τ sigma-fieldFτ is defined to consist of allF for which F{τ ≤ t} ∈ Ft for
all t ∈ T .
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The classFτ would not be a sigma-field ifτ were not a stopping time: the
property� ∈ Fτ requires{τ ≤ t} ∈ Ft for all t .

Remark. Notice thatFτ ⊆ F∞ (becauseF{τ ≤ ∞} ∈ F∞ if F ∈ Fτ ), with
equality whenτ ≡ ∞. More generally, ifτ takes a constant value,t , thenFτ = Ft .
It would be very awkward if we had to distinguish between random variables taking
constant values and the constants themselves.

<12> Example. The stopping timeτ is measurable with respect toFτ , because, for
eachα ∈ R

+ and t ∈ T ,

{τ ≤ α}{τ ≤ t} = {τ ≤ α ∧ t} ∈ Fα∧t ⊆ Ft .

That is, {τ ≤ α} ∈ Fτ for all α ∈ R
+, from which theFτ -measurability follows by

the usual generating class argument. It would be counterintuitive if the information
corresponding to the sigma-fieldFτ did not include the value taken byτ itself.�

<13> Example. Supposeσ and τ are both stopping times, for whichσ ≤ τ always.
ThenFσ ⊆ Fτ because

F{τ ≤ t} = (
F{σ ≤ t}){τ ≤ t} for all t ∈ T,

and both sets on the right-hand side areFt -measurable ifF ∈ Fσ .�
<14> Exercise. Show that a random variableZ is Fτ -measurable if and only ifZ{τ ≤ t}

is Ft -measurable for allt in T .
Solution: For necessity, writeZ as a pointwise limit ofFτ -measurable simple
functions Zn, then note that eachZn{τ ≤ t} is a linear combination of indicator
functions ofFt -measurable sets.

For sufficiency, it is enough to show that{Z > α} ∈ Fτ and{Z < −α} ∈ Fτ , for
eachα ∈ R

+. For the first requirement, note that{Z > α}{τ ≤ t} = {Z{τ ≤ t} > α},
which belongs toFt for eacht , becauseZ{τ ≤ t} is assumed to beFt -measurable.
Thus {Z > α} ∈ Fτ . Argue similarly for the other requirement.�

The definition of Xτ is almost straightforward. Given random variables
{Xt : t ∈ T} and a stopping timeτ , we should defineXτ as the function taking
the valueXt (ω) when τ(ω) = t . If τ takes only values inT there is no problem.
However, a slight embarrassment would occur whenτ(ω) = ∞ if ∞ were not
a point of T , for then X∞(ω) need not be defined. In the happy situation when
there is a natural candidate forX∞, the embarrassment disappears with little fuss;
otherwise it is wiser to avoid the difficulty altogether by working only with the
random variableXτ {τ < ∞}, which takes the value zero whenτ is infinite.

Measurability ofXτ {τ < ∞}, even with respect to the sigma-fieldF, requires
further assumptions about the{Xt } for continuous time. For discrete time the task is
much easier. For example, if{Xn : n ∈ N0} is adapated to a filtration{Fn : n ∈ N0},
andτ is a stopping time for that filtration, then

Xτ {τ < ∞}{τ ≤ t} =
∑
i ∈N0

Xi {i = τ ≤ t}.

For i > t the i th summand is zero; fori ≤ t it equals Xi {τ = i }, which is
Fi -measurable. TheFτ -measurability ofXτ {τ < ∞} then follows by Exercise<14>
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The next Exercise illustrates the use of stopping times and theσ -fields they
define. The discussion does not directly involve martingales, but they are lurking in
the background.

<15> Exercise. A deck of 52 cards (26 reds, 26 blacks) is dealt out one card at a time,
face up. Once, and only once, you will be allowed to predict that the next card will
be red. What strategy will maximize your probability of predicting correctly?
Solution: Write Ri for the event{i th card is red}. Assume all permutations of
the deck are equally likely initially. WriteFn for theσ -field generated byR1, . . . , Rn.
A strategy corresponds to a stopping timeτ that takes values in{0, 1, . . . , 51}: you
should try to maximizePRτ+1.

Surprisingly,PRτ+1 = 1/2 for all such stopping rules. The intuitive explanation
is that you should always be indifferent, given that you have observed cards
1, 2, . . . , τ , between choosing cardτ + 1 or choosing card 52. That is, it should
be true thatP(Rτ+1 | Fτ ) = P(R52 | Fτ ) almost surely; or, equivalently, that
PRτ+1F = PR52F for all F ∈ Fτ ; or, equivalently, that

PRk+1F{τ = k} = PR52F{τ = k} for all F ∈ Fτ andk = 0, 1, . . . , 51.

We could then deduce thatPRτ+1 = PR52 = 1/2. Of course, we only need the
caseF = �, but I’ll carry along the generalF as an illustration of technique while
proving the assertion in the last display. By definition ofFτ ,

F{τ = k} = F{τ ≤ k − 1}c{τ ≤ k} ∈ Fk.

That is, F{τ = k} must be of the form{(R1, . . . , Rk) ∈ B} for some Borel
subsetB of R

k. Symmetry of the joint distribution ofR1, . . . , R52 implies that the
random vector(R1, . . . , Rk, Rk+1) has the same distribution as the random vector
(R1, . . . , Rk, R52), whence

PRk+1{(R1, . . . , Rk) ∈ B} = PR52{(R1, . . . , Rk) ∈ B}.
See Section8 for more about symmetry and martingale properties.�
The hidden martingale in the previous Exercise isXn, the proportion of red

cards remaining in the deck aftern cards have been dealt. You could check the
martingale property by first verifying thatP(Rn+1 | Fn) = Xn (an equality that is
obvious if one thinks in terms of conditional distributions), then calculating

(52−n−1)P (Xn+1 | Fn) = P
(
(52− n)Xn − Rn+1 | Fn

) = (52−n)Xn −P(Rn+1 | Fn).

The problem then asks for the stopping time to maximaize

PRτ+1 = ∑51
i =0 P (Ri +1{τ = i })

= ∑51
i =0 P (Xi {τ = i }) because{τ = i } ∈ Fi

= PXτ .

The martingale property tells us thatPX0 = PXi for i = 1, . . . , 51. If we could
extend the equality to randomi , by showing thatPXτ = PX0, then the surprising
conclusion from the Exercise would follow.

Clearly it would be useful if we could always assert thatPXσ = PXτ for
every martingale, and every pair of stopping times. Unfortunately (Or should I say
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fortunately?) the result is not true without some extra assumptions. The simplest
and most useful case concerns finite time sets. Ifσ takes values in a finite setT , and
if each Xt is integrable, then|Xσ | ≤ ∑

t∈T |Xt |, which eliminates any integrability
difficulties. For an infinite index set, the integrability ofXσ is not automatic.

<16> Stopping Time Lemma. Supposeσ and τ are stopping times for a filtration
{Ft : t ∈ T}, with T finite. Suppose both stopping times take only values inT .
Let F be a set inFσ for which σ(ω) ≤ τ(ω) when ω ∈ F . If {Xt : t ∈ T} is
a submartingale, thenPXσ F ≤ PXτ F . For supermartingales, the inequality is
reversed. For martingales, the inequality becomes an equality.

Proof. Consider only the submartingale case. For simplicity of notation, suppose
T = {0, 1, . . . , N}. Write eachXn as a sum of increments,Xn = X0 + ξ1 + . . . + ξn.
The inequalityσ ≤ τ , on F , lets us write

Xτ F − Xσ F =
(

X0F +
∑

1≤i ≤N

{i ≤ τ }Fξi

)
−

(
X0F +

∑
1≤i ≤N

{i ≤ σ }Fξi

)
=

∑
1≤i ≤N

{σ < i ≤ τ }Fξi .

Note that{σ < i ≤ τ }F = ({σ ≤ i − 1}F
) {τ ≤ i − 1}c ∈ Fi −1. The expected value

of each summand is nonnegative, by (subMG)′.�
Remark. If σ ≤ τ everywhere, the inequality for allF in Fσ implies that
Xσ ≤ P

(
Xτ | Fσ

)
almost surely. That is, the submartingale (or martingale, or

supermartingale) property is preserved at bounded stopping times.

The Stopping Time Lemma, and its extensions to various cases with infinite
index sets, is basic to many of the most elegant martingale properties. Results for
a general stopping timeτ , taking values inN or N0, can often be deduced from
results forτ ∧ N, followed by a passage to the limit asN tends to infinity. (The
random variableτ ∧ N is a stopping time, because{τ ∧ N ≤ n} equals the whole
of � when N ≤ n, and equals{τ ≤ n} when N > n.) As Problem[1] shows, the
finiteness assumption on the index setT is not just a notational convenience; the
Lemma<16> can fail for infiniteT .

It is amazing how many of the classical inequalities of probability theory can
be derived by invoking the Lemma for a suitable martingale (or submartingale or
supermartingale).

<17> Exercise. Let ξ1, . . . , ξN be independent random variables (or even just martingale
increments) for whichPξi = 0 andPξ2

i < ∞ for eachi . Define Si := ξ1 + . . . + ξi .
Prove the maximal inequalityKolmogorov inequality: for eachε > 0,

P

{
max

1≤i ≤N
|Si | ≥ ε

}
≤ PS2

N/ε2.

Solution: The random variablesXi := S2
i form a submartingale, for the natural

filtration. Define stopping timesτ ≡ N andσ := first i such that|Si | ≥ ε, with the
convention thatσ = N if |Si | < ε for every i . Why is σ a stopping time? Check
the pointwise bound,

ε2{max
i

|Si | ≥ ε} = ε2{Xσ ≥ ε2} ≤ Xσ .
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What happens in the case whenσ equalsN because|Si | < ε for every i ? Take
expectations, then invoke the Stopping Time Lemma (withF = �) for the
submartingale{Xi }, to deduce

ε2
P{max

i
|Si | ≥ ε} ≤ PXσ ≤ PXτ = PS2

N,

as asserted.�
Notice how the Kolmogorov inequality improves upon the elementary bound

P{|SN | ≥ ε} ≤ PS2
N/ε2. Actually it is the same inequality, applied toSσ instead

of SN , supplemented by a useful bound forPS2
σ made possible by the submartingale

property. Kolmogorov (1928) established his inequality as the first step towards a
proof of various convergence results for sums of independent random variables.
More versatile maximal inequalities follow from more involved appeals to the
Stopping Time Lemma. For example, a strong law of large numbers can be proved
quite efficiently (Bauer 1981, Section 6.3) by an appeal to the next inequality.

<18> Exercise. Let 0 = S0, . . . , SN be a martingale withvi := P(Si − Si −1)
2 < ∞ for

eachi . Let γ1 ≥ γ2 ≥ . . . ≥ γN be nonnegative constants. Prove theHájek-Rényi
inequality:

<19> P

{
max

1≤i ≤N
γi |Si | ≥ 1

}
≤

∑
1≤i ≤N

γ 2
i vi .

Solution: Define Fi := σ(S1, . . . , Si ). Write Pi for P(· | Fi ). Define ηi :=
γ 2

i S2
i −γ 2

i −1S2
i −1, and�i := Pi −1ηi . By the Doob decomposition from Example<7>,

the sequenceMk := ∑k
i =1(ηi − �i ) is a martingale with respect to the filtration{Fi };

andγ 2
k S2

k = (�1 + . . . + �k) + Mk. Define stopping timesσ ≡ 0 and

τ =
{

first i such thatγi |Si | ≥ 1,
N if γi |Si | < 1 for all i .

The main idea is to bound each�1 + . . .+�k by a single random variable�, whose
expectation will become the right-hand side of the asserted inequality.

Construct� from the martingale differencesξi := Si − Si −1 for i = 1, . . . , N.
For eachi , use the fact thatSi −1 is Fi −1 measurable to bound the contribution of�i :

�i = Pi −1

(
γ 2

i S2
i − γ 2

i −1S2
i −1

)
= γ 2

i Pi −1

(
ξ2

i + 2ξi Si −1 + S2
i −1

)
− γ 2

i −1S2
i −1

= γ 2
i Pi −1ξ

2
i + 2γ 2

i Si −1Pi −1ξi + (γ 2
i − γ 2

i −1)S
2
i −1.

The middle term on the last line vanishes, by the martingale difference property,
and the last term is negative, becauseγ 2

i ≤ γ 2
i −1. The sum of the three terms is less

than the nonnegative quantityγ 2
i P(ξ2

i | Fi −1), and

� := ∑
i ≤N γ 2

i Pi −1ξ
2
i ≥ ∑

i ≤k �i ,

for eachk, as required.
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The asserted inequality now follows via the Stopping Time Lemma:

P{max
i

γi |Si | ≥ 1} = P{γτ |Sτ | ≥ 1}
≤ Pγ 2

τ S2
τ

= PMτ + P(�1 + . . . + �τ)

≤ P�,

because�1 + . . . + �τ ≤ � andPMτ = PMσ = 0.�
The method of proof in Example<18> is worth remembering; it can be used

to derive several other bounds.

3. Convergence of positive supermartingales

In several respects the theory for positive (meaning nonnegative) supermartingales
{Xn : n ∈ N0} is particularly elegant. For example (Problem[5]), the Stopping
Time Lemma extends naturally to pairs of unbounded stopping times for positive
supermartingales. Even more pleasantly surprising, positive supermartingales
converge almost surely, to an integrable limit—as will be shown in this Section.

The key result for the proof of convergence is an elegant lemma (Dubins’s
Inequality) that shows why a positive supermartingale{Xn} cannot oscillate between
two levels infinitely often.

For fixed constantsα andβ with 0 ≤ α < β < ∞ define increasing sequences
of random times at which the process might drop belowα or rise aboveβ:

σ1 := inf{i ≥ 0 : Xi ≤ α}, τ1 := inf{i ≥ σ1 : Xi ≥ β},
σ2 := inf{i ≥ τ1 : Xi ≤ α}, τ2 := inf{i ≥ σ2 : Xi ≥ β},

and so on, with the convention that the infimum of an empty set is taken as+∞.

τ1σ1 σ2 τ2

β

α

0

Because the{Xi } are adapted to{Fi }, eachσi and τi is a stopping time for the
filtration. For example,

{τ1 ≤ k} = {Xi ≤ α, Xj ≥ β for somei ≤ j ≤ k },
which could be written out explicitly as a finite union of events involving only
X0, . . . , Xk.

When τk is finite, the segment{Xi : σk ≤ i ≤ τk} is called thekth upcrossing
of the interval [α, β] by the process{Xn : n ∈ N0}. The event{τk ≤ N} may
be described, slightly informally, by saying that the process completes at leastk
upcrossings of [α, β] up to time N.
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<20> Dubins’s inequality. For a positive supermartingale{(Xn, Fn) : n ∈ N0} and
constants0 ≤ α < β < ∞, and stopping times as defined above,

P{τk < ∞} ≤ (α/β)k for k ∈ N.

Proof. Choose, and temporarily hold fixed, a finite positive integerN. Defineτ0

to be identically zero. Fork ≥ 1, using the fact thatXτk ≥ β when τk < ∞ and
Xσk ≤ α whenσk < ∞, we have

P
(
β{τk ≤ N} + XN{τk > N}) ≤ PXτk∧N

≤ PXσk∧N Stopping Time Lemma

≤ P
(
α{σk ≤ N} + XN{σk > N}) ,

which rearranges to give

βP{τk ≤ N} ≤ αP{σk ≤ N} + PXN
({σk > N} − {τk > N})

≤ αP{τk−1 ≤ N} becauseτk−1 ≤ σk ≤ τk and XN ≥ 0.

That is,
P{τk ≤ N} ≤ α

β
P{τk−1 ≤ N} for k ≥ 1.

Repeated appeals to this inequality, followed by a passage to the limit asN → ∞,
leads to Dubins’s Inequality.�

Remark. When 0 = α < β we haveP{τ1 < ∞} = 0. By considering a
sequence ofβ values decreasing to zero, we deduce that on the set{σ1 < ∞} we
must haveXn = 0 for all n ≥ σ1. That is, if a positive supermartingale hits zero
then it must stay there forever.

Notice that the main part of the argument, beforeN was sent off to infinity,
involved only the variablesX0, . . . , XN . The result may fruitfully be reexpressed as
an assertion about positive supermartingales with a finite index set.

<21> Corollary. Let {(Xn, Fn) : n = 0, 1, . . . , N} be a positive supermartingale with a
finite index set. For each pair of constants0 < α < β < ∞, the probability that the
process completes at leastk upcrossings is less than(α/β)k.

<22> Theorem. Every positive supermartingale converges almost surely to a nonnega-
tive, integrable limit.

Proof. To prove almost sure convergence (with possibly an infinite limit) of the
sequence{Xn}, it is enough to show that the event

D = {ω : lim supXn(ω) > lim inf Xn(ω)}
is negligible. DecomposeD into a countable union of events

Dα,β = {lim supXn > β > α > lim inf Xn},
with α, β ranging over all pairs of rational numbers. OnDα,β we must haveτk < ∞
for everyk. ThusPDα,β ≤ (α/β)k for everyk, which forcesPDα,β = 0, andPD = 0.

The sequenceXn converges toX∞ := lim inf Xn on the setDc. Fatou’s lemma,
and the fact thatPXn is nonincreasing, ensure thatX∞ is integrable.�

<23> Exercise. Suppose{ξi } are independent, identically distributed random vari-
ablesξi with P{ξi = +1} = p and P{ξi = −1} = 1 − p. Define the partial
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sums S0 = 0 and Si = ξ1 + . . . + ξi for i ≥ 1. For 1/2 ≤ p < 1, show that
P{Si = −1 for at least onei } = (1 − p)/p.
Solution: Consider a fixedp with 1/2 < p < 1. Defineθ = (1 − p)/p. Define
τ = inf{i ∈ N : Si = −1}. We are trying to show thatP{τ < ∞} = θ . Observe that
Xn = θ Sn is a positive martingale with respect to the filtrationFn = σ(ξ1, . . . , ξn):
by independence and the equalityPθξi = 1,

PXnF = Pθξnθ Sn−1 F = PθξnPXn−1F = PXn−1F for F in Fn−1.

The sequence{Xτ∧n} is a positive martingale (Problem[3]). It follows that there
exists an integrableX∞ such thatXτ∧n → X∞ almost surely. The sequence{Sn}
cannot converge to a finite limit because|Sn − Sn−1| = 1 for all n. On the set where
τ = ∞, convergence ofθ Sn to a finite limit is possible only ifSn → ∞ andθ Sn → 0.
Thus,

Xτ∧n → θ−1{τ < ∞} + 0{τ = ∞} almost surely.

The bounds 0≤ Xτ∧n ≤ θ−1 allow us to invoke Dominated Convergence to deduce
that 1= PXτ∧n → θ−1

P{τ < ∞}.
Monotonicity ofP{τ < ∞} as a function ofp extends the solution top = 1/2.�
The almost sure limitX∞ of a positive supermartingale{Xn} satisfies the

inequality lim infPXn ≥ PX∞, by Fatou. The sequence{PXn} is decreasing. Under
what circumstances do we have it converging toPX∞? Equality certainly holds if
{Xn} converges toX∞ in L1 norm. In fact, convergence of expectations is equivalent
to L1 convergence, because

P|Xn − X∞| = P(X∞ − Xn)
+ + P(X∞ − Xn)

−

= 2P(X∞ − Xn)
+ − (PX∞ − PXn) .

On the right-hand side the first contribution tends to zero, by Dominated Conver-
gence, becauseX∞ ≥ (X∞ − Xn)

+ → 0 almost surely. (I just reproved Scheffé’s
lemma.)

<24> Corollary. A positive supermartingale{Xn} converges inL1 to its limit X∞ if
and only if PXn → PX∞.

<25> Example. Female bunyips reproduce once every ten years, according to a fixed
offspring distributionP on N. Different bunyips reproduce independently of each
other. What is the behavior of the numberZn of nth generation offspring from Lucy
bunyip, the first of the line, asn gets large? (The process{Zn : n ∈ N0} is usually
called abranching process.)

Write µ for the expected number of offspring for a single bunyip. If reproduc-
tion went strictly according to averages, thenth generation size would equalµn.
Intuitively, if µ > 1 there could be an explosion of the bunyip population; ifµ < 1
bunyips would be driven to extinction; ifµ = 1, something else might happen. A
martingale argument will lead rigorously to a similar conclusion.

Given Zn−1 = k, the size of thenth generation is a sum ofk independent
random variables, each with distributionP. Perhaps we could writeZn = ∑Zn−1

i =1 ξni ,
with the {ξni : i = 1, . . . , Zn−1} (conditionally) independently distributed likeP. I
have a few difficulties with that representation. For example, where isξn3 defined?
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Just on{Zn−1 ≥ 3}? On all of �? Moreover, the notation invites the blunder of
ignoring the randomness of the range of summation, leading to an absurd assertion
that P

∑Zn−1
i =1 ξni equals

∑Zn−1
i =1 Pξni = Zn−1µ. The corresponding assertion for an

expectation conditional onZn−1 is correct, but some of the doubts still linger.
It is much better to start with an entire family{ξni : n ∈ N, i ∈ N} of

independent random variables, each with distributionP, then defineZ0 = 1 and
Zn := ∑

i ∈N ξni {i ≤ Zn−1} for n ≥ 1. The random variableZn is measurable with
respect to the sigma-fieldFn = σ {ξki : k ≤ n, i ∈ N}, and, almost surely,

P(Zn | Fn−1) =
∑
i ∈N

P(ξni {i ≤ Zn−1} | Fn−1)

=
∑
i ∈N

{i ≤ Zn−1}P(ξni | Fn−1) becauseZn−1 is Fn−1-measurable

=
∑
i ∈N

{i ≤ Zn−1}P(ξni ) becauseξni is independent ofFn−1

= Zn−1µ.

If µ ≤ 1, the {Zn} sequence is a positive supermartingale with respect to the{Fn}
filtration. By Theorem<22>, there exists an integrable random variableZ∞ with
Zn → Z∞ almost surely.

A sequence of integersZn(ω) can converge to a finite limitk only if Zn(ω) = k
for all n large enough. Ifk > 0, the convergence would imply that, with nonzero
probability, only finitely many of the independent events{∑i ≤k ξni �= k} can occur.
By the converse to the Borel-Cantelli lemma, it would follow that

∑
i ≤k ξni = k

almost surely, which can happen only ifP{1} = 1. In that case,Zn ≡ 1 for all n.
If P{1} < 1, then Zn must converge to zero, with probability one, ifµ ≤ 1. The
bunyips die out if the average number of offspring is less than or equal to 1.

If µ > 1 the situation is more complex. IfP{0} = 0 the population cannot
decrease andZn must then diverge to infinity with probability one. IfP{0} > 0 the
convex functiong(t) := Pxtx must have a unique valueθ with 0 < θ < 1 for which
g(θ) = θ : the strictly convex functionh(t) := g(t) − t hash(0) = P{0} > 0 and
h(1) = 0, and its left-hand derivativePx(xtx−1 − 1) converges toµ − 1 > 0 as t
increases to 1. The sequence{θ Zn} is a positive martingale:

P(θ Zn | Fn−1) = {Zn−1 = 0} +
∑
k≥1

P
(
θξn,1+...+ξn,k{Zn−1 = k} | Fn−1

)
= {Zn−1 = 0} +

∑
k≥1

{Zn−1 = k}P(θξn1+...+ξn,k−1 | Fn−1)

=
∑
k∈N0

{Zn−1 = k}g(θ)k

= g(θ)Zn−1 = θ Zn−1 becauseg(θ) = θ .

The positive martingale{θ Zn} has an almost sure limit,W. The sequence{Zn} must
converge almost surely, with an infinite limit whenW = 0. As with the situation
when µ ≤ 1, the only other possible limit forZn is 0, corresponding toW = 1.
Because 0≤ θ Zn ≤ 1 for everyn, Dominated Convergence and the martingale
property giveP{W = 1} = limn→∞ Pθ Zn = Pθ Z0 = θ .
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In summary: On the setD := {W = 1}, which has probabilityθ , the bunyip
population eventually dies out; onDc, the population explodes, that is,Zn → ∞.

It is possible to say a lot more about the almost sure behavior of the process{Zn}
when µ > 1. For example, the sequenceXn := Zn/µ

n is a positive martingale,
which must converge to an integrable random variableX. On the set{X > 0}, the
process{Zn} grows geometrically fast, likeµn. On the setD we must haveX = 0,
but it is not obvious whether or not we might haveX = 0 for some realizations
where the process does not die out.

There is a simple argument to show that, in fact, eitherX = 0 almost surely
or X > 0 almost surely onD. With a little extra bookkeeping we could keep
track of the first generation ancestor of each bunyip in the later generations. If we
write Z( j )

n for the members of thenth generation descended from thej th (possibly
hypothetical) member of the first generation, thenZn = ∑

j ∈N Z( j )
n { j ≤ Z1}. The

Z( j )
n , for j = 1, 2, . . ., are independent random variables, each with the same

distribution asZn−1, and each independent ofZ1. In particular, for eachj , we have
Z( j )

n /µn−1 → X( j ) almost surely, where theX( j ), for j = 1, 2, . . ., are independent
random variables, each distributed likeX, and

µX = ∑
j ∈N X( j ){ j ≤ Z1} almost surely.

Write φ for P{X = 0}. Then, by independence,

P{X = 0 | Z1 = k} =
∏k

j =1
P{X( j ) = 0} = φk,

whenceφ = ∑
k∈N0

φk
P{Z1 = k} = g(φ). We must have eitherφ = 1, meaning that

X = 0 almost surely, or elseφ = θ , in which caseX > 0 almost surely onDc.
The latter must be the case ifX is nondegenerate, that is, ifP{X > 0} > 0, which
happens if and only ifPx (x log(1 + x)) < ∞—see Problem[14].�

4. Convergence of submartingales

Theorem<22> can be extended to a large class of submartingales by means of the
following decomposition Theorem, whose proof appears in the next Section.

<26> Krickeberg decomposition. Let {Sn : n ∈ N0} be a submartingale for which
supn PS+

n < ∞. Then there exists a positive martingale{Mn} and a positive
supermartingale{Xn} such thatSn = Mn − Xn almost surely, for eachn.

<27> Corollary. A submartingale withsupn PS+
n < ∞ converges almost surely to an

integrable limit.

For a direct proof of this convergence result, via an upcrossing inequality for
supermartingales that are not necessarily nonnegative, see Problem[11].

Remark. Finiteness of supn PS+
n is equivalent to the finiteness of supn P|Sn|,

because|Sn| = 2S+
n −(S+

n −S−
n ) and by the submartingale property,P(S+

n −S−
n ) = PSn

increases withn.

<28> Example. (Section 68 of Lévy 1937.) Let{Mn : n ∈ N0} be a martingale such
that |Mn − Mn−1| ≤ 1, for all n, and M0 = 0. In order thatMn(ω) converges to a
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finite limit, it is necessary that supn Mn(ω) be finite. In fact, it is also a sufficicient
condition. More precisely

{ω : lim
n

Mn(ω) exists as a finite limit} = {ω : supMn(ω) < ∞} almost surely.

To establish that the right-hand side is (almost surely) a subset of the left-hand side,
for a fixed positiveC defineτ as the firstn for which that Mn > C, with τ = ∞
when supn Mn ≤ C. The martingaleXn := Mτ∧n is bounded above by the constant
C + 1, because the increment (if any) that pushesMn aboveC cannot be larger
than 1. In particular, supn PX+

n < ∞, which ensures that{Xn} converges almost
surely to a finite limit. On the set{supn Mn ≤ C} we haveMn = Xn for all n, and
henceMn also converges almost surely to a finite limit on that set. Take a union
over a sequence ofC values increasing to∞ to complete the argument.

Remark. Convergence ofMn(ω) to a finite limit also implies that
supn |Mn(ω)| < ∞. The result therefore contains the surprising asssertion that,
almost surely, finiteness of supn Mn(ω) implies finiteness of supn |Mn(ω)|.

As a special case, consider a sequence{An} of events adapted to a filtration{Fn}.
The martingaleMn := ∑n

i =1 (Ai − P(Ai | Fi −1)) has increments bounded in absolute
value by 1. For almost allω, finiteness of

∑
n∈N{ω ∈ An} implies supn Mn(ω) < ∞,

and hence convergence of the sum of conditional probabilities. Argue similarly for
the martingale{−Mn} to conclude that

{ω :
∑∞

n=1 An < ∞} = {ω :
∑∞

n=1 P(An | Fn−1) < ∞} almost surely,

a remarkable generalization of the Borel-Cantelli lemma for sequences of independent
events.�

*5. Proof of the Krickeberg decomposition

It is easiest to understand the proof by reinterpreting the result as assertion about
measures. To each integrable random variableX on (�, F, P) there corresponds a
signed measureµ defined onF by µF := P(X F) for F ∈ F. The measure can
also be written as a difference of two nonnegative measuresµ+ andµ−, defined by
µ+F := P(X+F) andµ−F := P(X−F), for f ∈ F.

By equivalence (MG)′, a sequence of integrable random variables{Xn : n ∈ N0}
adapted to a filtration{Fn : n ∈ N0} is a martingale if and only if the corresponding
sequence of measures{µn} on F has the property

<29> µn+1
∣∣
Fn

= µn

∣∣
Fn

for eachn,

where, in general,ν
∣∣
G

denotes the restriction of a measureν to a sub-sigma-
field G. Similarly, the defining inequality (subMG)′ for a submartingale,µn+1F :=
P(Xn+1F) ≥ PXnF =: µnF for all F ∈ Fn, is equivalent to

<30> µn+1
∣∣
Fn

≥ µn

∣∣
Fn

for eachn.
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Now consider the submartingale{Sn : n ∈ N0} from the statement of the
Krickeberg decomposition. Define an increasing functionalλ : M+(F) → [0, ∞] by

λ f := lim sup
n

P(S+
n f ) for f ∈ M+(F).

Notice thatλ1 = lim supn PS+
n , which is finite, by assumption. The functional also

has a property analogous to absolute continuity: ifP f = 0 thenλ f = 0.
Write λk for the restriction ofλ to M+(Fk). For f in M+(Fk), the submartingale

property for{S+
n } ensures thatPS+

n f increases withn for n ≥ k. Thus

<31> λk f := λ f = lim
n

P(S+
n f ) = sup

n≥k
P(S+

n f ) if f ∈ M+(Fk).

The increasing functionalλk is linear (because linearity is preserved by limits), and
it inherits the Monotone Convergence property fromP: for functions inM+(Fk)

with 0 ≤ fi ↑ f ,

sup
i

λk fi = sup
i

sup
n≥k

P
(
S+

n fi
) = sup

n≥k
sup

i
P

(
S+

n fi
) = sup

n≥k
P

(
S+

n f
) = λk f.

It defines a finite measure onFk that is absolutely continuous with respect toP
∣∣
Fk

.
Write Mk for the corresponding density inM+(�, Fk).

The analog of<29> identifies {Mk} as a nonnegative martingale, because
λk+1

∣∣
Fk

= λ
∣∣
Fk

= λk. Moreover,Mk ≥ S+
k almost surely because

PMk{Mk < S+
k } = λk{Mk < S+

k } ≥ PS+
k {Mk < S+

k },
the last inequality following from<31> with f := {Mk < S+

k }. The random variables
Xk := Mk − Sk are almost surely nonnegative. Also, forF ∈ Fk,

PXk F = PMk F − PSk F ≥ PMk+1F − PSk+1F = PXk+1F,

because{Mk} is a martingale and{Sk} is a submartingale. It follows that{Xk} is a
supermartingale, as required for the Krickeberg decomposition.

*6. Uniform integrability

Corollary <27> gave a sufficient condition for a submartingale{Xn} to converge
almost surely to an integrable limitX∞. If {Xn} happens to be a martingale, we
know that Xn = P(Xn+m | Fn) for arbitrarily largem. It is tempting to leap to the
conclusion that

<32> Xn
?= P(X∞ | Fn),

as suggested by a purely formal passage to the limit asm tends to infinity. One
should perhaps look before one leaps.

<33> Example. Reconsider the limit behavior of the partial sums{Sn} from Exam-
ple <23> but with p = 1/3 and θ = 2. The sequenceXn = 2Sn is a positive
martingale. By the strong law of large numbers,Sn/n → −1/3 almost surely, which
gives Sn → −∞ almost surely andX∞ = 0 as the limit of the martingale. Clearly
Xn is not equal toP(X∞ | Fn).�
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Remark. The branching process of Example<25> with µ = 1 provides
another case of a nontrivial martingale converging almost surely to zero.

As you will learn in this Section, the condition for the validity of<32>

(without the cautionary question mark) isuniform integrability. Remember that
a family of random variables{Zt : t ∈ T} is said to be uniformly integrable
if supt∈T P|Zt |{ |Zt | > M} → 0 as M → ∞. Remember also the following
characterization ofL1 convergence, which was proved in Section2.8.

<34> Theorem. Let {Zn : n ∈ N} be a sequence of integrable random variables. The
following two conditions are equivalent.

(i) The sequence is uniformly integrable and it converges in probability to a
random variableZ∞, which is necessarily integrable.

(ii) The sequence converges inL1 norm, P|Zn − Z∞| → 0, to an integrable
random variableZ∞.

The necessity of uniform integrability for<32> follows immediately from a
general property of conditional expectations.

<35> Lemma. For a fixed integrable random variableZ, the family of all conditional
expectations{P(Z | G) : G a sub-sigma-field ofF} is uniformly integrable.

Proof. Write ZG for P(Z | G). With no loss of generality, we may suppose
Z ≥ 0, because|ZG| ≤ P

(|Z| | G
)
. Invoke the defining property of the conditional

expectation, and the fact that{ZG > M2} ∈ G, to rewritePZG{ZG > M2} as

PZ{ZG > M2} ≤ MP{ZG > M2} + PZ{Z > M}.
The first term on the right-hand side is less thanMPZG/M2 = PZ/M, which tends
to zero asM → ∞. The other term also tends to zero, becauseZ is integrable.�

More generally, ifX is an integrable random variable and{Fn : n ∈ N0} is a
filtration then Xn := P(X | Fn) defines a uniformly integrable martingale. In fact,
every uniformly integrable martingale must be of this form.

<36> Theorem. Every uniformly integrable martingale{Xn : n ∈ N0} converges almost
surely and inL1 to an integrable random variableX∞ , for which Xn = P(X∞ | Fn).
Moreover, if Xn := P(X | Fn) for some integrableX then X∞ = P(X | F∞), where
F∞ := σ (∪n∈NFn).

Proof. Uniform integrability implies finiteness of supn P|Xn|, which lets us deduce
via Corollary<27> the almost sure convergence to the integrable limitX∞. Almost
sure convergence implies convergence in probability, which uniform integrability
and Theorem<34> strengthen toL1 convergence. To show thatXn = P(X∞ | Fn),
fix an F in Fn. Then, for all positivem,

|PX∞F − PXnF | ≤ P|X∞ − Xn+m| + |PXn+mF − PXnF |.
The L1 convergence makes the first term on the right-hand side converge to zero
asm tends to infinity. The second term is zero for all positivem, by the martingale
property. ThusPX∞F = PXnF for every F in Fn.
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If P(X | Fn) = Xn = P(X∞ | Fn) then PX F = PX∞F for eachF in Fn. A
generating class argument then gives the equality for allF in F∞, which characterizes
the F∞-measurable random variableX∞ as the conditional expectationP(X | F∞).�

Remark. More concisely: the uniformly integrable martingales{Xn : n ∈ N}
are precisely those that can be extended to martingales{Xn : n ∈ N}. Such a
martingale is sometimes said to beclosed on the right.

<37> Example. Classical statistical models often consist of a parametric family
P = {Pθ : θ ∈ �} of probability measures that define joint distributions of infinite
sequencesω := (ω1, ω2, . . .) of possible observations. More formally, eachPθ could
be thought of as a probability measure onR

N, with random variablesXi as the
coordinate maps.

For simplicity, suppose� is a Borel subset of a Euclidean space. The
parameterθ is said to beconsistently estimatedby a sequence of measurable
functionsθ̂n = θ̂n(ω0, . . . , ωn) if

<38> Pθ { |̂θn − θ | > ε} → 0 for eachε > 0 and eachθ in �.

A Bayesian would define a joint distributionQ := π ⊗ P for θ and ω by
equipping� with a prior probability distributionπ . The conditional distributions
Qn,t given the random vectorsTn := (X0, . . . , Xn) are called posterior distributions.
We could also regardπnω(·) := Qn,Tn(ω)(·) as random probability measures on the
product space. An expectation with respect toπnω is a version of a conditional
expectation given the the sigma-fieldFn := σ(X1, . . . , Xn).

A mysterious sounding result of Doob (1949) asserts that mere existence of
some consistent estimator forθ ensures that theπnω distributions will concentrate
around the right value, in the delicate sense that forπ-almost allθ , theπnω measure
of each neighborhood ofθ tends to one forPθ -almost allω.

The mystery dissipates when one understands the role of the consistent
estimator. When averaged out over the prior, property<38> implies (via Dominated
Convergence) thatQ{(θ, ω) : |̂θn(ω) − θ | > ε} → 0. A Q-almost surely convergent
subsequence identifiesθ as anF∞-measurable random variable,τ(ω), on the product
space, up to aQ equivalence. That is,θ = τ(ω) a.e. [Q].

Let U be a countable collection of open sets generating the topology of�.
That is, each open set should equal the union of theU-sets that it contains. For
eachU in U, the sequence of posterior probabilitiesπnω{θ ∈ U } = Q{θ ∈ U | Fn}
defines a uniformly integrable martingale, which convergesQ-almost surely to

Q{θ ∈ U | F∞} = {θ ∈ U } because{θ ∈ U } =
a.s.

{τ(ω) ∈ U } ∈ F∞.

Cast out a sequence ofQ-negligible sets, leaving a setE with QE = 1 and
πnω{θ ∈ U } → {θ ∈ U } for all U in U, all (θ, ω) ∈ E, which implies Doob’s result.�

*7. Reversed martingales

Martingale theory gets easier when the index setT has a largest element, as in the
caseT = −N0 := {−n : n ∈ N0}. Equivalently, one can reverse the “direction of
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time,” by considering families of integrable random variables{Xt : t ∈ T} adapted
to decreasing filtrations, families of sub-sigma-fields{Gt : t ∈ T} for which Gs ⊇ Gt

when s < t . For such a family, it is natural to defineG∞ := ∩t∈TGt if it is not
already defined.

<39> Definition. Let {Xn : n ∈ N0} be a sequence of integrable random variables,
adapted to a decreasing filtration{Gn : n ∈ N0}. Call {(Xn, Gn) : n ∈ N0} a reversed
supermartingaleif P(Xn | Gn+1) ≤ Xn+1 almost surely, for eachn. Define reversed
submartingales and reversed martingales analogously.

That is, {(Xn, Gn) : n ∈ N0} is a reversed supermartingale if and only if
{(X−n, G−n) : n ∈ −N0} is a supermartingale. In particular, for each fixedN, the
finite sequenceXN, XN−1, . . . , X0 is a supermartingale with respect to the filtration
GN ⊆ GN−1 ⊆ . . . ⊆ G0.

<40> Example. If {Gn : n ∈ N0} is a decreasing filtration andX is an integrable
random variable, the sequenceXn := P(X | Gn) defines a uniformly integrable,
(Lemma<35>) reversed martingale.�

The theory for reversed positive supermartingales is analogous to the theory
from Section3, except for the slight complication that the sequence{PXn : n ∈ N0}
might be increasing, and therefore it is not automatically bounded.

<41> Theorem. For every reversed, positive supermartingale{(Xn, Gn) : n ∈ N0}:
(i) there exists anX∞ in M+(�, G∞) for which Xn → X∞ almost surely;

(ii) P(Xn | G∞) ↑ X∞ almost surely;

(iii) P|Xn − X∞| → 0 if and only if supn PXn < ∞.

Proof. The Corollary<21> to Dubins’s Inequality bounds by(α/β)k the probability
that XN, XN−1, . . . , X0 completes at leastk upcrossings of the interval [α, β], no
matter how large we takeN. As in the proof of Theorem<22>, it then follows
that P{lim supXn > β > α > lim inf Xn} = 0, for each pair 0≤ α < β < ∞, and
henceXn converges almost surely to a nonnegative limitX∞, which is necessarily
G∞-measurable.

I will omit most of the “almost sure” qualifiers for the remainder of the proof.
Temporarily abbreviateP(· | Gn) to Pn(·), for n ∈ N0, and writeZn for P∞Xn. From
the reversed supermartingale property,Pn+1Xn ≤ Xn+1, and the rule for iterated
conditional expectations we get

Zn = P∞Xn = P∞ (Pn+1Xn) ≤ P∞Xn+1 = Zn+1.

Thus Zn ↑ Z∞ := lim supn Zn, which isG∞-measurable.
For (ii) we need to showZ∞ = X∞, almost surely. Equivalently, as both

variables areG∞-measurable, we need to showP (Z∞G) = P (X∞G) for eachG
in G∞. For such aG,

P(Z∞G) = supn∈N0
P(ZnG) Monotone Convergence

= supn P(XnG) definition of Zn := P∞Xn

= supn supm∈N P ((Xn ∧ m)G) Monotone Convergence, for fixedn

= supm supn P ((Xn ∧ m)G) .



Advanced Prob 2018

6.7 Reversed martingales 157

The sequence{Xn ∧ m : n ∈ N0} is a uniformly bounded, reversed positive
supermartingale, for each fixedm. ThusP ((Xn ∧ m)G) increases withn, and, by
Dominated Convergence, its limit equalsP ((X∞ ∧ m)G). Thus

P(Z∞G) = supm P ((X∞ ∧ m)G) = P (X∞G) ,

the final equality by Monotone Convergence. Assertion (ii) follows.
Monotone Convergence and (ii) imply thatPX∞ = supn PXn. Finiteness of

the supremum is equivalent to integrability ofX∞. The sufficiency in assertion (iii)
follows by the usual Dominated Convergence trick (also known as Scheffé’s lemma):

P|X∞ − Xn| = 2P (X∞ − Xn)
+ − (PX∞ − PXn) → 0.

For the necessity, just note that anL1 limit of a sequence of integrable random
variables is integrable.�

The analog of the Krickeberg decomposition extends the result to reversed
submartingales{(Xn, Gn) : n ∈ N0}. The sequenceMn := P(X+

0 | Gn) is a
reversed positive martingale for whichMn ≥ P(X0 | Gn) ≥ Xn almost surely. Thus
Xn = Mn − (Mn − Xn) decomposesXn into a difference of a reversed positive
martingale and a reversed positive supermartingale.

<42> Corollary. Every reversed submartingale{(Xn, Gn) : n ∈ N0} converges almost
surely. The limit is integrable, and the sequence also converges in theL1 sense, if
infn PXn > −∞.

Proof. Apply Theorem<41> to both reversed positive supermartingales{Mn − Xn}
and {Mn}, noting that supn PMn = PX+

0 and supn P (Mn − Xn) = PX+
0 − infn PXn.�

<43> Corollary. Every reversed martingale{(Xn, Gn) : n ∈ N0} converges almost surely,
and inL1, to the limit X∞ := P(X0 | G∞), whereG∞ := ∩n∈N0Gn.

Proof. The identification of the limit as the conditional expectation follows from the
facts thatP(X0G) = P(XnG), for eachn, and|P(XnG)−P(X∞G)| ≤ P|Xn−X∞| → 0,
for eachG in G∞.�

Reversed martingales arise naturally from symmetry arguments.

<44> Example. Let {ξi : i ∈ N} be a sequence of independent random elements taking
values in a setX equipped with a sigma-fieldA. Suppose eachξi induces the same
distribution P on A, that is,P f (ξi ) = P f for each f in M+(X,A). For eachn
define theempirical measurePn,ω (or just Pn, if there is no need to emphasize the
dependence onω) on X as the probability measure that places massn−1 at each of
the pointsξ1(ω), . . . , ξn(ω). That is, Pn,ω f := n−1 ∑

1≤i ≤n f (ξi (ω)).
Intuitively speaking, knowledge ofPn tells us everything about the values

ξ1(ω), . . . , ξn(ω) except for the order in which they were produced. Conditionally
on Pn, we know thatξ1 should be one of the points supportingPn, but we don’t know
which one. The conditional distribution ofξ1 given Pn should put probabilityn−1

at each support point, and it seems we should then have

<45> P ( f (ξ1) | Pn) = Pn f.

Remark. Here I am arguing, heuristically, assumingPn concentrates onn
distinct points. A similar heuristic could be developed when there are ties, but there
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is no point in trying to be too precise at the moment. The problem of ties would
disappear from the formal argument.

Similarly, if we knew all Pi for i ≥ n then we should be able to locateξi (ω)

exactly for i ≥ n + 1, but the values ofξ1(ω), . . . , ξn(ω) would still be known only
up to random relabelling of the support points ofPn. The new information would
tell us no more aboutξ1 than we already knew fromPn. In other words, we should
have

<46> P ( f (ξ1) | Gn) = . . . = P ( f (ξn) | Gn) = Pn f whereGn : ?= σ(Pn, Pn+1, . . .),

which would then give

P (Pn−1 f | Gn) = 1
n − 1

n−1∑
i =1

P ( f (ξi ) | Gn) = 1
n − 1

n−1∑
i =1

Pn f = Pn f.

That is,{(Pn f, Gn) : n ∈ N} would be a reversed martingale, for each fixedf .
It is possible to defineGn rigorously, then formalize the preceeding heuristic

argument to establish the reversed martingale property. I will omit the details,
because it is simpler to replaceGn by the closely relatedn-symmetric sigma-fieldSn,
to be defined in the next Section, then invoke the more general symmetry arguments
(Example<50>) from that Section to show that{(Pn f, Sn) : n ∈ N} is a reversed
martingale for eachP-integrable f .

Corollary <43> ensures thatPn f → P( f (ξ1) | S∞) almost surely. As you will
see in the next Section (Theorem<51>, to be precise), the sigma-fieldS∞ is trivial—
it contains only events with probability zero or one—andP(X | S∞) = PX, almost
surely, for each integrable random variableX. In particular, for eachP-integrable
function f we have

f (ξ1) + . . . + f (ξn)

n
= Pn f → P f almost surely.

The special caseX := R andP|ξ1| < ∞ and f (x) ≡ x recovers the Strong Law of
Large Numbers (SLLN) for independent, identically distributed summands.

In statistical problems it is sometimes necessary to prove a uniform analog of
the SLLN (a USLLN):

�n := sup
θ

|Pn fθ − P fθ | → 0 almost surely,

where{ fθ : θ ∈ �} is a class ofP-integrable functions onX. Corollary <41> can
greatly simplify the task of establishing such a USLLN.

To avoid measurability difficulties, let me consider only the case where� is
countable. WriteXn,θ for Pn fθ − P fθ . Also, assume that theenvelopeF := supθ | fθ |
is P-integrable, so thatP�n ≤ P (PnF + P F) = 2P F < ∞.

For each fixedθ , we know that{(Xn,θ , Sn) : n ∈ N} is a reversed martingale,
and hence

P (�n | Sn+1) = P

(
sup

θ

|Xn,θ | | Sn+1

)
≥ sup

θ

∣∣P (
Xn,θ | Sn+1

)∣∣ = �n+1.

That is, {(�n, Sn) : n ∈ N} is a reversed submartingale. From Corollary<41>,
�n converges almost surely to aS∞-measurable random variable�∞, which by
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the triviality of S∞ (Theorem<51> again) is (almost surely) constant. To prove
the USLLN, we have only to show that the constant is zero. For example, it
would suffice to showP�n → 0, a great simplification of the original task. See
Pollard (1984, Section II.5) for details.�

*8. Symmetry and exchangeability

The results in this Section involve probability measures on infinite product spaces. You
might want to consult Section4.8 for notation and the construction of product measures.

The symmetry arguments from Example<44> did not really require an
assumption of independence. The reverse martingale methods can be applied to
more general situations where probability distributions have symmetry properties.

Rather than work with random elements of a space(X,A), it is simpler to deal
with their joint distribution as a probability measure on the product sigma-fieldAN

of the product spaceXN, the space of all sequences,x := (x1, x2, . . .), on X. We
can think of the coordinate mapsξi (x) := xi as a sequence of random elements
of (X,A), when it helps.

<47> Definition. Call a one-to-one mapπ from N onto itself ann-permutation if
π(i ) = i for i > n. Write R(n) for the set of alln! distinct n-permutations. Call
∪n∈NR(n) the set of allfinite permutationsof N. Write Sπ for the map, fromXN

back onto itself, defined by

Sπ (x1, x2, . . . , xn, . . .) := (xπ(1), xπ(2), . . . , xπ(n), . . .)

:= (xπ(1), xπ(2), . . . , xπ(n), xn+1, . . .) if π ∈ R(n).

Say that a functionh on XN is n-symmetricif it is unaffected alln-permutations,
that is, if hπ (x) := h(Sπx) = h(x) for everyn-permutationπ .

<48> Example. Let f be a real valued function onX. Then the function
∑m

i =1 f (xi )

is n-symmetric for everym ≥ n, and the function lim supm→∞
∑m

i =1 f (xi )/m is
n-symmetric for everyn.

Let g be a real valued function onX ⊗ X. Then g(x1, x2) + g(x2, x1) is
2-symmetric. More generally,

∑
1≤i �= j ≤m g(xi , xj ) is n-symmetric for everym ≥ n.

For every real valued functionf on XN, the function

F(x) := 1
n!

∑
π∈R(n)

fπ (x) = 1
n!

∑
π∈R(n)

f (xπ(1), xπ(2), . . . , xπ(n), xn+1, . . .)

is n-symmetric.�
<49> Definition. A probability measureP on AN is said to beexchangeableif it is

invariant underSπ for every finite permutationπ , that is, if Ph = Phπ for everyh
in M+(XN, AN) and every finite permutationπ . Equivalently, underP the random
vector

(
ξπ(1), ξπ(2), . . . , ξπ(n)

)
has the same distribution as(ξ1, ξ2, . . . , ξn), for every

n-permutationπ , and everyn.

The collection of all sets inAN whose indicator functions aren-symmetric
forms a sub-sigma-fieldSn of AN, the n-symmetric sigma-field. TheSn-measurable
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functions are thoseAN-measurable functions that aren-symmetric. The sigma-fields
{Sn : n ∈ N} form a decreasing filtration onXN, with S1 = AN.

<50> Example. SupposeP is exchangeable. Letf be a fixedP-integrable function
on XN. Then a symmetry argument will show that

P( f | Sn) = 1
n!

∑
π∈R(n)

fπ (x).

The function—call it F(x)—on the right-hand side isn-symmetric, and hence
Sn-measurable. Also, for each bounded,Sn-measurable functionH ,

P ( f (x)H(x)) = P ( fπ Hπ ) for all π , by exchangeability

= P ( fπ H) for all π in R(n)

= 1
n!

∑
π∈R(n)

P ( fπ (x)H(x)) = P (F(x)H(x)) .

As a special case, iff depends only on the first coordinate then we have

P ( f (x1) | Sn)) = 1
n!

∑
π∈R(n)

f
(
xπ(1)

) = Pn f,

where Pn denotes the empirical measure, as in Example<44>.�
When the coordinate maps are independent under an exchangeableP, the

symmetric sigma-fieldS∞ becomes trivial, and conditional expectations (such as
P ( f (x1) | S∞)) reduce to constants.

<51> Theorem. (Hewitt-Savage zero-one law) IfP = PN, the symmmetric sigma-
field S∞ is trivial: for eachF in S∞, eitherPF = 0 or PF = 1.

Proof. Write h(x) for the indicator function ofF , a set inS∞. By definition,
hπ = h for every finite permutation. EquipXN with the filtrationFn = σ {xi : i ≤ n}.
Notice thatF∞ := σ (∪n∈NFn) = AN = S1.

The martingaleYn := P(F | Fn) converges almost surely toP(F | F∞) = F ,
and also, by Dominated Convergence,P|h − Yn|2 → 0.

The Fn-measurable random variableYn may be written ashn(x1, . . . , xn), for
someAn-measurablehn on Xn. The random variableZn := hn(xn+1, . . . , x2n) is
independent ofYn, and it too converges inL2 to h: if π denotes the 2n-permutation
that interchangesi and i + n, for 1 ≤ i ≤ n, then, by exchangeability,

P|h(x) − Zn|2 = P|hπ (x) − hn
(
xπ(n+1), . . . , xπ(2n)

) |2 = P|h(x) − Yn|2 → 0.

The random variablesZn andYn are independent, and they both converge inL2(P)-
norm to F . Thus

0 = lim
n→∞ P|Yn − Zn|2 = lim

n→∞

(
PY2

n − 2(PYn) (PZn) + PZ2
n

)
= PF − 2(PF)2 + PF.

It follows that eitherPF = 0 or PF = 1.�
In a sense made precise by Problem[17], the product measuresPN are the

extreme examples of exchangeable probability measures—they are the extreme
points in the convex set of all exchangeable probability measures onAN. A
celebrated result of de Finetti (1937) asserts that all the exchangeable probabilities
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can be built up from mixtures of product measures, in various senses. The simplest
general version of the de Finetti result is expressed as an assertion of conditional
independence.

<52> Theorem. Under an exchangeable probability distributionP on (XN, AN), the
coordinate maps are conditionally independent given the symmetric sigma-fieldS∞.
That is, for all setsAi in A,

P (x1 ∈ A1, . . . , xm ∈ Am | S∞) = P (x1 ∈ A1 | S∞) × . . . × P (xm ∈ Am | S∞)

almost surely, for everym.

Proof. Consider only the typical case wherem = 3. The proof of the general case
is similar. Write fi for the indicator function ofAi . AbbreviateP(· | Sn) to Pn, for
n ∈ N. From Example<50>, for n ≥ 3,

n3 (Pn f1(x1)) (Pn f2(x2)) (Pn f3(x3)) =
∑

{1 ≤ i, j, k ≤ n} f1(xi ) f2(xj ) f3(xk).

On the right-hand side, there aren(n−1)(n−2) triples of distinct subscripts(i, j, k),
leaving O(n2) of them with at least one duplicated subscript. The latter contribute
a sum bounded in absolute value by a multiple ofn2; the former appear in the sum
that Example<50> identifies asPn

(
f1(x1) f2(x2) f3(x3)

)
. Thus

(Pn f1(x1)) (Pn f2(x2)) (Pn f3(x3)) = n(n − 1)(n − 2)

n3
Pn

(
f1(x1) f2(x2) f3(x3)

)+O(n−1).

By the convergence of reverse martingales, in the limit we get

(P∞ f1(x1)) (P∞ f2(x2)) (P∞ f3(x3)) = P∞
(

f1(x1) f2(x2) f3(x3)
)
,

the desired factorization.�
When conditional distributions exist, it is easy to extract from Theorem<52>

the representation ofP as a mixture of product measures.

<53> Theorem. Let A be the Borel sigma-field of a separable metric spaceX. Let P be
an exchangeable probability measure onAN, under which the distributionP of x1 is
tight. Then there exists anS∞-measurable mapT into [0, 1]N, with distributionQ,
for which conditional distributions{Pt : t ∈ T} exist, andPt = PN

t , a product
measure, forQ almost allt .

Proof. Let E := {Ei : i ∈ N} be a countable generating class for the sigma-fieldA,
stable under finite intersections and containingX. For eachi let Ti (x) be a version
of P (x1 ∈ Ei | S∞). By symmetry,Ti (x) is also a version ofP

(
xj ∈ Ei | S∞

)
, for

every j . Define T as the map fromXN into T := [0, 1]N for which T(x) has i th
coordinateTi (x).

The joint distribution ofx1 and T is a probability measure� on the product
sigma-field ofX×T, with marginalsP andQ. As shown in Section1 of Appendix F,
the assumptions onP ensure existence of a probability kernelP := {Pt : t ∈ T} for
which

Pg(x1, T) = �x,t g(x, t) = Q
t Px

t g(x, t) for all g in M+(X × T).

In particular, by definition ofTi and theS∞-measurability ofT ,

Q
t (ti h(t)) = P (Ti h(T)) = P

({x1 ∈ Ei }h(T)
) = Q

t
(
h(t)Pt Ei

)
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for all h in M+(T), which implies thatPt Ei = ti a.e. [Q], for eachi .
For every finite subcollection{Ei1, . . . , Ein} of E, Theorem<52> asserts

P{x1 ∈ Ei1, . . . , xn ∈ Ein | S∞} =
∏n

j =1
P{xj ∈ Ei j | S∞} =

∏n

j =1
Ti j (x) a.e. [P],

which integrates to

P{x1 ∈ Ei1, . . . , xn ∈ Ein} = P

(∏n

j =1
Ti j (x)

)
= Q

t
(∏n

j =1
ti j

)
= Q

t
(∏n

j =1
Pt Ei j

)
= Q

t
Pt {x1 ∈ Ei1, . . . , xn ∈ Ein}.

A routine generating class argument completes the proof.�

9. Problems

[1] Follow these steps to construct an example of a martingale{Zi } and a stopping
time τ for which PZ0 �= PZτ {τ < ∞}.

(i) Let ξ1, ξ2, . . . be independent, identically distributed random variables with
P{ξi = +1} = 1/3 andP{ξi = −1} = 2/3. Define X0 = 0 andXi := ξ1 + . . . + ξi

and Zi := 2Xi , for i ≥ 1. Show that{Zi } is a martingale with respect to an
appropriate filtration.

(ii) Define τ := inf{i : Xi = −1}. Show thatτ is a stopping time, finite almost
everywhere. Hint: Use SLLN.

(iii) Show that PZ0 > PZτ . (Should you worry about what happens on the
set {τ = ∞}?)

[2] Let τ be a stopping time for the natural filtration generated by a sequence of random
variables{Zn : n ∈ N}. Show thatFτ = σ {Zτ∧n : n ∈ N}.

[3] Let {(Zn, Fn) : n ∈ N0} be a (sub)martingale andτ be a stopping time. Show that
{(Zτ∧n, Fn) : n ∈ N0} is also a (sub)martingale. Hint: ForF in Fn−1, consider
separately the contributions toPZn∧τ F andPZ(n−1)∧τ F from the regions{τ ≤ n − 1}
and {τ ≥ n}.

[4] Let τ be a stopping time for a filtration{Fi : i ∈ N0}. For an integrable random
variableX, defineXi := P(X | Fi ). Show that

P(X | Fτ ) =
∑
i ∈N0

{τ = i }Xi = Xτ almost surely.

Hint: Start with X ≥ 0, so that there are no convergence problems.

[5] Let {(Xn, Fn) : n ∈ N0} be a positive supermartingale, and letσ and τ be stopping
times (not necessarily bounded) for whichσ ≤ τ on a setF in Fσ . Show that
PXσ {σ < ∞}F ≥ PXτ {τ < ∞}F . Hint: For each positive integerN, show
that FN := F{σ ≤ N} ∈ Fσ∧N . Use the Stopping Time Lemma to prove that
PXσ∧N FN ≥ PXτ∧N FN ≥ PXτ {τ ≤ N}F , then invoke Monotone Convergence.
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[6] For each positive supermartingale{(Xn, Fn) : n ∈ N0}, and stopping timesσ ≤ τ ,
show thatP (Xτ {τ < ∞} | Fσ ) ≤ Xσ {σ < ∞} almost surely.

[7] (Kolmogorov 1928) Letξ1, . . . , ξn be independent random variables withPξi = 0
and |ξi | ≤ 1 for eachi . Define Xi := ξ1 + . . . + ξi and Vi := PX2

i . For eachε > 0
show thatP

{
maxi ≤n |Xi | ≤ ε

} ≤ (1 + ε)2/Vn. Note the direction of the inequalities.
Hint: Define a stopping timeτ for which Vn

{
maxi ≤n |Xi | ≤ ε

} ≤ Vτ {τ = n}. Show
that PVτ = PX2

τ ≤ (1 + ε)2.

[8] (Birnbaum & Marshall 1961) Let 0= X0, X1, . . . be nonnegative integrable random
variables that are adapted to a filtration{Fi }. Suppose there exist constantsθi , with
0 ≤ θi ≤ 1, for which

(∗) P(Xi | Fi −1) ≥ θi Xi −1 for i ≥ 1.

Let C1 ≥ C2 ≥ . . . ≥ CN+1 = 0 be constants. Prove the inequality

(∗∗) P{max
i ≤N

Ci Xi ≥ 1} ≤
N∑

i =1

(Ci − θi +1Ci +1)PXi ,

by following these steps.

(i) Interpret (∗) to mean that there exist nonnegative,Fi −1-measurable random
variablesYi −1 for which P(Xi | Fi −1) = Yi −1 + θi Xi −1 almost surely. Put
Zi := Xi − Yi −1 − θi Xi −1. Show thatCi Xi ≤ Ci −1Xi −1 + Ci Zi + Ci Yi −1 almost
surely.

(ii) Deduce thatCi Xi ≤ Mi + �, where Mi is a martingale withM0 = 0 and
� := ∑N

i =1 Ci Yi −1.

(iii) Show that the left-hand side of inequality (∗∗) is less thanPCτ Xτ for an
appropriate stopping timeτ , then rearrange the sum forP� to get the asserted
upper bound.

[9] (Doob 1953, page 317) SupposeS1, . . . , Sn is a nonnegative submartingale, with
PSp

i < ∞ for some fixedp > 1. Let q > 1 be defined byp−1 + q−1 = 1. Show that
P

(
maxi ≤n Sp

i

) ≤ qp
PSp

n , by following these steps.

(i) Write Mn for maxi ≤n Si . For fixedx > 0, and an appropriate stopping timeτ ,
apply the Stopping Time Lemma to show that

xP{Mn ≥ x} ≤ PSτ {Sτ ≥ x} ≤ PSn{Mn ≥ x}.
(ii) Show that PX p = ∫ ∞

0 pxp−1
P{X ≥ x} dx for each nonnegative random

variableX.

(iii) Show thatPM p
n ≤ qPSnM p−1

n .

(iv) Bound the last product using Hölder’s inequality, then rearrange to get the
stated inequality. (Any problems with infinite values?)

[10] Let (�, F, P) be a probability space such thatF is countably generated: that is,
F = σ {B1, B2, . . .} for some sequence of sets{Bi }. Let µ be a finite measure onF,
dominated byP. Let Fn := σ {B1, . . . , Bn}.
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(i) Show that there is a partitionπn of � into at most 2n disjoint sets fromFn such
that eachF in Fn is a union of sets fromπn.

(ii) Define Fn-measurable random variablesXn by: for ω ∈ A ∈ πn,

Xn(ω) =
{

µA/PA if PA > 0,
0 otherwise.

Show thatPXnF = µF for all F in Fn.

(iii) Show that (Xn, Fn) is a positive martingale.

(iv) Show that {Xn} is uniformly integrable. Hint: What do you know about
µ{Xn ≥ M}?

(v) Let X∞ denote the almost sure limit of the{Xn}. Show thatPX∞F = µF for
all F in F. That is, show thatX∞ is a density forµ with respect toP.

[11] Let {(Xn, Fn) : n ∈ N0} be a submartingale. For fixed constantsα < β (not
necessarily nonnegative), define stopping timesσ1 ≤ τ1 ≤ σ2 ≤ . . ., as in Section3.
Establish the upcrossing inequality,

P{τk ≤ N} ≤ P (XN − α)+

k(β − α)

for each positive integerN, by following these steps.

(i) Show thatZn = (Xn − α)+ is a positive submartingale, withZσi = 0 if σi < ∞
and Zτi ≥ β − α if τi < ∞.

(ii) For each i , show thatZτi ∧N − Zσi ∧N ≥ (β − α){τi ≤ N}. Hint: Consider
separately the three casesσi > N, σi ≤ N < τi , andτi ≤ N.

(iii) Show that−PZσ1∧N + PZτk∧N ≥ k(β − α)P{τk ≤ N}. Hint: Take expectations
then sum overi in the inequality from part (ii). Use the Stopping Time Lemma
for submartingales to provePZτi ∧N − PZσi +1∧N ≤ 0.

(iv) Show thatPZτk∧N ≤ PZN = P (XN − α)+.

[12] Reprove Corollary<27> (a submartingale{Xn : n ∈ N0} converges almost surely to
an integrable limit if supn PX+

n < ∞) by following these steps.

(i) For fixed α < β, use the upcrossing inequality from Problem[11] to prove that

P{lim infn Xn < α < β < lim supn Xn} = 0

(ii) Deduce that{Xn} converges almost surely to a limit random variableX that
might take the values±∞.

(iii) Prove thatP|Xn| ≤ 2PX+
n − PX1 for everyn. Deduce via Fatou’s lemma that

P|X| < ∞.

[13] Suppose the offspring distribution in Example<25> has finite meanµ > 1 and
varianceσ 2.

(i) Show that var(Zn) = σ 2µn−1 + µ2var(Zn−1).

(ii) Write Xn for the martingaleZn/µ
n. Show that supn var(Xn) < ∞.

(iii) Deduce thatXn converges both almost surely and inL1 to the limit X, and
hencePX = 1. In particular, the limitX cannot be degenerate at 0.
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[14] Suppose the offspring distributionP from Example<25> has has finite meanµ > 1.
Write Xn for the martingaleZn/µ

n, which converges almost surely to an integrable
limit random variableX. Show that the limitX is nondegenerate if and only if the
condition

(XlogX) Px (x log(1 + x)) < ∞,

holds. Follow these steps. Writeµn for Px
(
x{x ≤ µn}) andPn (·) for expectations

conditional onFn.

(i) Show that
∑

n (µ − µn) = Px
(
x

∑
n{x > µn}), which converges to a finite limit

if and only if (XlogX) holds.

(ii) Define X̃n := µ−n
∑

i ξn,i {ξn,i ≤ µn}{i ≤ Zn−1}. Show thatPn−1X̃n = µn Xn−1/µ

almost surely. Show also that

X − XN = ∑∞
n=N+1 (Xn − Xn−1) ≥ ∑∞

n=N+1

(
X̃n − Xn−1

)
almost surely.

(iii) Show that, for some constantC1,∑
n P{X̃n �= Xn} ≤ ∑

n µn−1P{x > µn} ≤ C1µ < ∞.

Deduce that
∑

n

(
X̃n − Xn

)
converges almost surely to a finite limit.

(iv) Write varn−1 for the conditional variance corresponding toPn−1. Show that

varn−1(X̃n) = µ−2n ∑
i {i ≤ Zn−1}varn−1

(
ξn,i {ξn,i ≤ µn}) .

Deduce, via (ii), that∑
n P

(
X̃n − µn Xn−1/µ

)2 ≤ ∑
n µ−n−1Px2{x ≤ µn} ≤ C2µ < ∞,

for some constantC2. Conclude that
∑

n

(
X̃n − µn Xn−1/µ

)
is a martingale,

which converges both almost surely and inL1.

(v) Deduce from (iii), (iv), and the fact that
∑

n(Xn − Xn−1) converges almost
surely, that

∑
n Xn−1(1 − µn/µ) converges almost surely to a finite limit.

(vi) SupposeP{X > 0} > 0. Show that there exists anω for which both∑
n Xn−1(ω)(1 − µn/µ) < ∞ and limXn−1(ω) > 0. Deduce via (i) that

(XlogX) holds.

(vii) Suppose(XlogX) holds. From (i) deduce thatP
(∑

n Xn−1(1 − µn/µ)
)

< ∞.
Deduce via (iv) that

∑
n(X̃n − Xn−1) converges inL1. Deduce via (ii) that

PX ≥ P
(
XN + ∑∞

n=N+1(X̃n − Xn−1)
) = 1 − o(1) as N → ∞, from which it

follows that X is nondegenerate. (In fact,P|Xn − X| → 0. Why?)

[15] Let {ξi : i ∈ N} be a martingale difference array for which
∑

i ∈N P
(
ξ2

i / i 2
)

< ∞.

(i) Define Xn := ∑n
i =1 ξi / i . Show that supn PX2

n < ∞. Deduce thatXn(ω)

converges to a finite limit for almost allω.

(ii) Invoke Kronecker’s lemma to deduce thatn−1 ∑n
i =1 ξi → 0 almost surely.

[16] Suppose{Xn : n ∈ N} is an exchangeable sequence of square-integrable random
variables. Show that cov(X1, X2) ≥ 0. Hint: EachXi must have the same vari-
ance,V ; each pairXi , Xj , for i �= j , must have the same covariance,C. Consider
var

(∑
i ≤n Xi

)
for arbitrarily largen.
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[17] (Hewitt & Savage 1955, Section 5) LetP be exchangeable, in the sense of
Definition <49>.

(i) Let f be a bounded,An-measurable function onXn. DefineX := f (x1, . . . , xn)

andY := f (xn+1, . . . , x2n). Use Problem[16] to show thatP(XY) ≥ (PX) (PY),
with equality if P is a product measure.

(ii) SupposeP = α1Q1 + α2Q2, with αi > 0 andα1 + α2 = 1, whereQ1 andQ2 are
distinct exchangeable probability measures. Letf be a bounded, measurable
function on someXn for whichµ1 := Q1 f (x1, . . . , xn) �= Q2 f (x1, . . . , xn) =: µ2.
Define X andY as in part (i). Show thatP(XY) > (PX) (PY). Hint: Use strict
convexity of the square function to show thatα1µ

2
1 + α2µ

2
2 > (α1µ1 + α2µ2)

2.
Deduce thatP is not a product measure.

(iii) SupposeP is not a product measure. Explain why there exists anE ∈ An and
a bounded measurable functiong for which

P
({z ∈ E}g(xn+1, xn+2, . . .)

) �= (P{z ∈ E}) (Pg(xn+1, xn+2, . . .)) ,

wherez := (x1, . . . , xn). Defineα = P{z ∈ E}. Show that 0< α < 1. For each
h ∈ M+(XN, AN), define

Q1h := P ({z ∈ E}h(xn+1, xn+2, . . .)) /α,

Q2h := P
({z ∈ Ec}h(xn+1, xn+2, . . .)

)
/(1 − α).

Show thatQ1 andQ2 correspond to distinct exchangeable probability measures
for which P = αQ1 + (1 − α)Q2. That is,P is not an extreme point of the set
of all exchangeable probability measures onAN.

10. Notes

De Moivre used what would now be seen as a martingale method in his solution
of the gambler’s ruin problem. (Apparently first published in 1711, according
to Thatcher (1957). See pages 51–53 of the 1967 reprint of the third edition of
de Moivre (1718).)

The namemartingaleis due to Ville (1939). L´evy (1937, chapter VIII), expand-
ing on earlier papers (Lévy 1934, 1935a, 1935b), had treated martingale differences,
identifying them as sequences satisfying his condition(C). He extended several
results for sums of independent variables to martingales, including Kolmogorov’s
maximal inequality and strong law of large numbers (the version proved in Sec-
tion 4.6), and even a central limit theorem, extending Lindeberg’s method (to be
discussed, for independent summands, in Section7.2). He worked with martingales
stopped at random times, in order to have sums of conditional variances close to
specified constant values.

Doob (1940) established convergence theorems (without using stopping times)
for martingales and reversed martingales, calling them sequences with “propertyE.”
He acknowledged (footnote to page 458) that the basic maximal inequalities were
“implicit in the work of Ville” and that the method of proof he used “was used by
Lévy (1937), in a related discussion.” It was Doob, especially with his stochastic
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processes book (Doob 1953—see, in particular the historical notes to Chapter VII,
starting page 629), who was the major driving force behind the recognition of
martingales as one of the most important tools of probability theory. See L´evy’s
comments in Note II of the 1954 edition of Lévy (1937) and in Lévy (1970,
page 118) for the relationship between his work and Doob’s.

I first understood some martingale theory by reading the superb text of
Ash (1972, Chapter 7), and from conversations with Jim Pitman. The material
in Section3 on positive supermartingales was inspired by an old set of notes for
lectures given by Pitman at Cambridge. I believe the lectures were based in part
on the original French edition of the book Neveu (1975). I have also borrowed
heavily from that book, particularly so for Theorems<26> and <41>. The book
of Hall & Heyde (1980), although aimed at central limit theory and its application,
contains much about martingales in discrete time. Dellacherie & Meyer (1982,
Chapter V) covered discrete-time martingales as a preliminary to the detailed study
of martingales in continuous time.

Exercise<15> comes from Aldous (1983, p. 47).
Inequality <20> is due to Dubins (1966). The upcrossing inequality of

Problem [11] comes from the same paper, slightly weakening an analogous
inequality of Doob (1953, page 316). Krickeberg (1963, Section IV.3) established
the decomposition (Theorem<26>) of submartingales as differences of positive
supermartingales.

I adapted the branching process result of Problem[14], which is due to Kesten
& Stigum (1966), from Asmussen & Hering (1983, Chapter II).

The reversed submartingale part of Example<44> comes from Pollard (1981).
The zero-one law of Theorem<51> for symmetric events is due to Hewitt &
Savage (1955). The study of exchangeability has progressed well beyond the
original representation theorem. Consult Aldous (1983) if you want to know more.
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enchaˆınées’,Bull. Soc. math59, 1–32.
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Lévy, P. (1970),Quelques Aspects de la Pensée d’un Math́ematicien, Blanchard, Paris.
Neveu, J. (1975),Discrete-Parameter Martingales, North-Holland, Amsterdam.
Pollard, D. (1981), ‘Limit theorems for empirical processes’,Zeitschrift f̈ur

Wahrscheinlichkeitstheorie und Verwandte Gebiete57, 181–195.
Pollard, D. (1984),Convergence of Stochastic Processes, Springer, New York.
Thatcher, A. R. (1957), ‘A note on the early solutions of the problem of the duration

of play’, Biometrika44, 515–518.
Ville, J. (1939),Etude Critique de la Notion de Collectif, Gauthier-Villars, Paris.




