
Measures and integral
representations

1 Inner measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Finite additivity . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Countable additivity . . . . . . . . . . . . . . . . . . . . . 4

2 Lebesgue measure on Euclidean space . . . . . . . . . . . . . . . 5
3 The Kolmogorov extension theorem . . . . . . . . . . . . . . . . 6
4 Linear functionals as integrals . . . . . . . . . . . . . . . . . . . . 6
5 Extension to a larger sigma-field . . . . . . . . . . . . . . . . . . 11
6 Measures on locally compact spaces . . . . . . . . . . . . . . . . 11

The following explanation streamlines, expands, and corrects the version
of the arguments presented by Pollard (2001, Appendix A).

1 Inner measures
S:inner

The construction of a countably additive measure on a sigma-field on a set X

usually starts from a set function µ defined on K, a small collection of sub-
sets of X. One requires µ to have measure-like properties on K then seeks to
extend µ to a larger domain.

The classical approach (Folland, 1999, Chapter 1) takes K as a field or a
ring of sets. One defines an outer measure for every subset of X by

µ∗A = inf{
∑

i
µKi : A ⊆ ∪i∈NKi, Ki ∈ K}.

One then shows that

S∗ = {S ⊆ X : µ∗A = µ∗(AS) + µ∗(ASc) for every A ⊆ X}
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§1 Inner measures 2

is a sigma-field and that the restriction µ̃ of µ∗ to S∗ is a countably additive
measure. I believe this variation on Lebesgue’s original argument is due to
Carathéodory.

For many probabilistic purposes it is important to be able to approximate
Borel sets from inside by compact sets, µ̃B = sup{µ̃K : B ⊇ K, K compact}.
Measures with this property are known as Radon measures.

Topsøe (1970) took this desirable property as the starting point for the
construction of measures. He took K to be an abstract set of subsets of X
with properties analogous to those of the collection of all compact subsets
of a Hausdorff topological space (such as Rd). For a map µ : K → R+ he
adapted the Carathéodory approach for use with an inner measure, defined
by

inner.definner.def <1> µ∗A = sup{µK : A ⊇ K ∈ K},

The role of the closed sets was taken over by

F(K) := {F ⊆ X : FK ∈ K for every K ∈ K, }

with B(K) := σ (F(K)) playing the role of the Borel sigma-field.
By analogy with the outer method construction, Topsøe identified

S∗ := {S ⊆ X : µ∗A = µ∗(AS) + µ∗(AS
c) for every A ⊆ X}

as a suitable domain for the extension.
In general, the set K is assumed to be a (∅,∪f,∩c) paving on X, meaning

that ∅ ∈ K and that K is stable under finite unions and countable intersec-
tions.

Typically K is not stable under complements or differences, which makes
it tricky to capture the idea that µ should at least have some sort of finite-
additivity property. In place of finite-additivity Topsøe required that µ be
K-tight:Note: A\B :=

ABc := A ∩Bc.
kk.tightkk.tight <2> µK1 = µK2 + µ∗(K1\K2) for all K1,K2 ∈ K with K1 ⊇ K2.

As a surrogate for countable additivity of µ, Topsøe required that µ be
sigma-smooth at ∅:

sigma.smooth.setsigma.smooth.set <3> µKn ↓ 0 if {Kn : n ∈ N} ⊂ K and Kn ↓ ∅.

Under these conditions the set S∗ is a sigma-field and the restriction of µ∗
to S∗ is a countably additive measure, with the useful inner regularity prop-
erty.
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§1 Inner measures 3

inner.reg <4> Theorem. Suppose K is an (∅,∪f,∩c) paving on a set X and µ : K → R+ is
a K-tight map that is sigma-smooth at ∅. Then there exists an extension of µ
to a countably additive, K-inner regular measure µ̃ on a sigma-field S∗, which
contains the sigma-field B(K) generated by F(K).

The term K-inner-regular means that µ̃A = sup{µK : A ⊇ K ∈ K} for
each A in S∗. For the construction described in the remainder of the Section,
K-inner-regularity comes from the fact µ̃(A) = µ∗(A).

Remark. Compare with Theorem 1 from Section IX.§3.1 of Bourbaki
(2004b). Essentially their Lemma 1 established K-tightness for the paving
of all compact subsets of a Hausdorff topological space. Their result as-
sumed a property stronger than σ-smoothness. See Section 5.

It helps to break the construction of the measure into two steps. First one
shows that S∗ is a field (stable under finite unions and intersections and com-
plements) that contains F(K) and that the restriction of µ∗ to S∗ is finitely
additive. Those properties simplify the second step, which translates the σ-
smoothness into countable additivity.

1.1 Finite additivity

In fact the first part has very little to do with inner measures; the outer mea-
sure construction starts in the same way.

S

Sc

T T c

AST

<5> Task: Show that S∗ is stable under complements and pairwise intersections,
that is, S∗ is a field of subsets of X. Show also that the restriction µ̃ of µ∗
to S∗ is a finitely additive measure. Argue as follows.

(i) If S, T ∈ S∗ and A ⊆ X define B = A ∩ (ST )c. Show that

µ∗A = µ∗(AST )+ µ∗(AS
cT ) + µ∗(AST

c) + µ∗(AS
cT c)

µ∗B = µ∗(AS
cT ) + µ∗(AST

c) + µ∗(AS
cT c).

(ii) If S, T ∈ S∗ and ST = ∅ consider A = S ∪ T .

�

The K-tightness property establishes the connection between S∗ and F(K).

<6> Task: If µ is K-tight show:
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§1 Inner measures 4

(i) µ is non-decreasing on K, that is, µK1 ≥ µK2 if K1 ⊇ K2

(ii) µ∗(K) = µK for each K ∈ K

(iii) µ(K1 ∪K2) = µK1 + µK2 if K1 and K2 are disjoint members of K

(iv) µ∅ = 0

(v) µ∗A ≥ µ∗(AB) + µ∗(AB
c) for all subsets A, B of X.

(vi) S ∈ S∗ iff µK ≤ µ∗(KS) + µ∗(KS
c) for every K in K

(vii) If F ∈ F(K) and K ∈ K then µK = µ(KF ) + µ∗(KF
c). Hint: K0 :=

KF ∈ K and KF c = K\K0. Deduce that F(K) ⊆ S∗.

�

Now we know that all elements of F(K), which includes K, belong to S∗.
For calculations involving only sets in S∗ we can use the finite additivity of µ∗,
which makes some of the approximation arguments more familiar for anyone
who is used to working with the linearity properties of integrals.

1.2 Countable additivity

First extend the σ-smoothness to decreasing sequences of K-sets whose inter-
section (which necessarily belongs to K) might not be empty.

LKn LKn
cK∞

KnK∞
c   Lc

<7> Task: Suppose µ is a map from K to R+ that is K-tight and sigma-smooth
at ∅. If if {Kn : n ∈ N} ⊂ K and Kn ↓ K∞, show that µKn ↓ µK∞. Argue
as follows. Given ε > 0 choose L ∈ K with L ⊆ K1\K∞ and ε + µL >
µ∗(K1\K∞). Then explain why

µKn ≤ µK∞ + µ(KnL) + µ∗(K1K
c
∞L

c).

Note that KnL ↓ ∅. Use the finite additivity.

�

With K-tightness and sigma-smoothness you have enough to prove that S∗
is a sigma-field and that µ∗ defines a countably additive measure on S∗. For
sequences {Ai : i ∈ N} in S∗, you need to show:

(i) S := ∪i∈NAi belongs to S∗

(ii) If the Ai’s are disjoint then µ∗S =
∑

i∈N µ∗Ai.
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§1 Inner measures 5

This task is made easier because we already know that S∗ is a field and that µ∗
is finitely additive on S∗. It is easier to work with the sets Sn = ∪i≤nAi, for
which Sn ↑ S and, if the Ai’s are disjoint, µ∗Sn =

∑
i≤n µ∗Ai.

<8> Task: Suppose {Sn : n ∈ N} in S∗ and Sn ↑ S. Show that S ∈ S∗ and
µ∗Sn ↑ µ∗S by the following steps.

(i) Consider an arbitrary K in K. Show that KScn ↓ KSc and

µK ≤ µ∗(KS) + µ∗(KS
c
n).

(ii) Prove that µ∗(KS
c
n) ↓ µ∗(KSc). Argue as follows. Given ε > 0 choose

Li ∈ K with Li ⊆ KSci and µ∗(KS
c
iL

c
i ) < ε/2i. Define Kn = ∩i≤nLi and

K∞ = ∩i∈NLi.

(a) Show that Kn ⊆ KScn and K∞ ⊆ KSc and µ∗(KS
c
nK

c
n) < ε.

(b) Use sigma-smoothness at K∞ to deduce that

limn µ∗(KS
c
n) ≤ ε+ µK∞ ≤ ε+ µ∗(KS

c).

(iii) Deduce that µK ≤ µ∗(KS) + µ∗(KS
c) and S ∈ S∗.

�

It remains only to show that the restriction of µ∗ to S∗ is countably addi-
tive. The notation continues from Task 4.

<9> Task:
We know that µ∗S ≥ µ∗Sn ↑ C for some (possibly infinite) C. To avoid

some messy details with the case µ∗S =∞ consider any t for which µ∗S > t ∈
R+. We have only to prove that C ≥ t.

Choose K ⊆ S with µK > t. Show that

t < µK = µ∗(KSn) + µ∗(KS
c
n) ≤ C + µ∗(KS

c
n).

Use (ii) from Task 4 to dispose of limn→∞ µ∗(KSn).

�

Now you should put together all the pieces to establish Theorem <4>.
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§2 Lebesgue measure on Euclidean space 6

2 Lebesgue measure on Euclidean space
S:Lebesgue

Let K denote the set of all compact subsets of Rk and let I denote the set
of all open rectangles of the form I = (a1, b1) × · · · × (ak, bk) and I denote
the set of all closed rectangles of the form I = [a1, b1] × · · · × [ak, bk] Define
v(I) = v(I) =

∏
i(bi − ai) for their volumes.

For each K in K define

LebLeb <10> µK = inf{
∑

i
v(Ii) : K ⊂ ∪iIi}

where the infimum runs over all all finite coverings of K by intervals from I.

<11> Task: Show that µK =
∏
i(bi − ai) if K =

∏
i[ai, bi]. The inequality µK ≤∏

i(bi − ai + 2ε) for each ε > 0 is easy.
Here is a suggestion for the reverse inequality. For simplicity suppose k =

2 and K = [a0, b0] × [c0, d0] ⊆ J1 ∪ . . . Jn, where Jα = (aα, bα) × (cα, dα).
There exist real numbers s0 < s1 < · · · < s` and t0 < t1 < · · · < tm
for which K and each Jα can be decomposed into a union of intervals of the
form Ii,j = [si, si+1]× [tj , tj+1].

�

Notice that, for each δ > 0, we may assume that each Ii in <10> has
diameter at most δ. For example, for arbitrarily large n the rectangle I =
(0, 1)× (0, 1) is covered by

⋃
i,j Ii,j where

Ii,j = {(x, y) : i/n ≤ x ≤ (i+ 1)/n, j/n ≤ y ≤ (j + 1)/n}

and v(I) =
∑

I,j v(Ii,j). Then each of those closed rectangles can be ex-
panded slightly to an open rectangle.

<12> Task: For all K,L ∈ K show that µ(K ∪ L) ≤ µK + µL, with equality ifsubadd

K ∩ L = ∅. For the second part note that if the distance between K and L
is greater than δ and if each Ii in a covering ∪iIi of K ∪ L has diameter less
than δ then no Ii can intersect both K and L.

�

The proof of sigma-smoothness is made trivial by the compactness. If
Ki ∈ K and K1 ⊇ K2 ⊇ . . . ↓ ∅ then K1 ⊂ ∪i≥2Kc

i . By compactness,
K1 ⊆ Kc

m for some m, which forces Km = ∅.
The other requirement of Theorem <4> is only slightly more difficult to

establish.

<13> Task: Prove that µ is K-tight.
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§3 The Kolmogorov extension theorem 7

Suppose K1,K2 ∈ K and K1 ⊃ K2. Use Task 12
to show that µK1 ≥ µK2 + µ∗(K1\K2).
For the reverse inequality, cover K2 by G = ∪iIi with ε + µK2 >

∑
i v(Ii).

Note that L := K1\G is a subset of K1\K2. Find a cover ∪jJj of L for
which ε + µL >

∑
j v(Jj). Show that the finite set of Ii and Jj rectangles

cover K1 so that µK1 ≤
∑

i v(Ii) +
∑

j v(Jj) ≤ 2ε+ µK2 + µL.

�

3 The Kolmogorov extension theorem
S:Kolmogorov

4 Linear functionals as integrals
S:Daniell

Suppose A is a sigma-field on a set X. Chapter 2 of Pollard (2001) exploited
the natural correspondence between measures µ on A and increasing ‘linear’
functionals (integrals) on the cone M+(X,A) of all measurable functions tak-
ing values in [0,∞].

lin.fnal <14> Theorem. For each measure µ on (X,A) there is a uniquely determined
functional, a map T from M+(X,A) into [0,∞], having the following prop-
erties:

(i) T (1A) = µA for each A in A;

(ii) T (0) = 0, where the first zero stands for the zero function;

(iii) for nonnegative real numbers α, β and functions f , g in M+,‘linear’

T (αf + βg) = αT (f) + βT (g);

(iv) if f , g are in M+ and f ≤ g everywhere then T (f) ≤ T (g);increasing

(v) if f1, f2, . . . is a sequence in M+ with 0 ≤ f1(x) ≤ f2(x) ≤ . . . ↑ f(x) for
each x in X then T (fn) ↑ T (f).monotone con-

vergence property

The monotone convergence property for the integral is an analog of the
countable additivity of the measure.

The term ‘linear’ might be misleading because the domain M+ is not a
vector space. The true linearity emerges after the integral is extended to
functions taking both positive and negative real values. When restricted to
the vector space L1(X,A, µ), the integral is a real-valued linear functional,
with the countable additivity of the measure implying other results (such as
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§4 Linear functionals as integrals 8

Dominated Convergence) that allow interchange in the order of pointwise lim-
its and integration. We gain flexibility by making the domain a vector space
but at the cost of having to be more careful about possibly infinite limits or
about contributions froim sets with small measure.

The construction of the integral involves little work once we have the
measure on a sigma-field; and recovery of the measure from the functional,
via µA = T (1A), is a triviality because 1A belongs to the domain of T .

Another approach to integration (due to Daniell, 1918—see Segal and
Kunze, 1978, Section 3.3) starts with a linear functional T on a ‘small’ vec-
tor space H of real-valued functions and seeks to extend that functional to a
much larger collection of functions. Only later does one try to recover the un-
derlying measure and interpret the extended functional as an integral with re-
spect to that measure. For example, for Lebesgue measure on [0, 1] we might
start with the functional Tf =

∫ 1
0 f(x) dx defined for the set of all contin-

uous real functions on [0, 1] by some sort of Riemann integral. The Daniell
construction then extends the domain of T to include at least all bounded,
Borel-measurable functions. One can then recover the Lebesgue measure of
Borel sets via the extended functional, which can be interpreted as an integral
with respect to Lebesgue measure.

Topsøe (1970, Section 3) carried out a Daniell-like extension procedure us-
ing an “inner integral” approach. Pollard and Topsøe (1975) modified that
approach by using the functional T on H to construct a K-tight set function
on a (∅,∪f,∩c) paving K defined by H. The method described in Section 1
provides the extension of the measure to a suitably large sigma-field. The in-
tegral with respect to that measure defines the extension/representation for
the functional. This approach has the advantage of recovering a large variety
of integral representation theorems in one fell swoop.

The simplest case occurs when H is a vector lattice of real-valued func-
tions, that is, a vector space that is stable under the operations of pointwise
maximum or minimum of pairs of functions:

(h1∨h2)(x) := max (h1(x), h2(x)) and (h1∧h2)(x) := min (h1(x), h2(x)) .

It is not necessary to assume that the constant functions belong to H. In-
stead one assumes that H satisfies Stone’s condition

StoneStone <15> 1 ∧ h ∈ H for each h ∈ H.

Here it might be better to write 1 ∧ h to emphasize that the 1 represents the
constant function taking value 1, which need not belong to H.
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§4 Linear functionals as integrals 9

Remark. Think of the case where H equals the set of all continuous func-
tions with compact support on the real line. The function 1 is continuous
but the set {x ∈ R : 1(x) 6= 0} does not have compact closure.

Daniell <16> Theorem. Let H be a vector lattice of real-valued functions satisfying Stone’s
condition, defined on a set X. Let T : H → R be an increasing linear func-
tional for which

sigma.smooth.fnalsigma.smooth.fnal <17> T (hn) ↓ 0 if {hn : n ∈ N} ⊂ H and hn(x) ↓ 0 for each x.

Then there exists an (∅,∪f,∩c) paving K on X and a K-tight function µ on K

that is sigma-smooth at ∅ for which:

(i) Each h in H is B(K)-measurable.

(ii) The K-inner-regular extension µ̃ of µ is the unique K-inner-regular
measure for which T (h) = µ̃h for each h ∈ H.

Remark. In fact B(K) will be the sigma-field generated by H, the small-
est sigma-field σ(H) for which each member of H is σ(H)\B(R)-measurable.
If H were the set of all bounded continuous real functions on X, this σ(H)
is often called the Baire sigma-field.

For separable metric spaces the Baire and Borel sigma-fields are the
same.

If H were the set of all continuous real functions with compact sup-
port on a locally compact Hausdorff space then σ(H) could be smaller
than the Borel sigma-field.

See Section 5 for a condition stronger than σ-smoothness that leads
to measures on larger sigma-fields.

Assumption <17> is sometimes called sigma-smoothness at zero, an
analogue of <3>. Because H is a vector space and T takes real values, <17>
is equivalent to either of

T (hn) ↓ T (h∞) if {hn : n ∈ N ∪ {∞}} ⊂ H and hn(x) ↓ h∞(x) for each x

T (hn) ↑ T (h∞) if {hn : n ∈ N ∪ {∞}} ⊂ H and hn(x) ↑ h∞(x) for each x.

The equivalence comes from replacement of hn by hn − h∞ or h∞ − hn. Note
well that the equivalence depends on the assumption that the limit func-
tion h∞ belongs to H.

Once again I’ll break the proof of the Theorem into a sequence of tasks.

<18> Task: Define K as the set of all subsets K of X whose indicator functions are
pointwise infima of countable sets of H functions: 1K = inf H0 where H ⊂ H

and H0 is countable. Equivalently, if H0 = {hi : i ∈ N} we could replace hn
by min(h1, . . . , hn) so that hn(x) ↓ 1{x ∈ K}.
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§4 Linear functionals as integrals 10

(i) Show that K is a (∅,∪f,∩c) paving on X.

(ii) Show that t ∧ h and (h− t)+ are in H if h ∈ H and t > 0 is a constant.

(iii) If h ∈ H and t > 0 is a constant show that

inf
n>1/t

[1 ∧ ((n+ 1)h(x)− (nt− 1))]+ = 1{x : h(x) ≥ t}.

Deduce that {h ≥ t} ∈ K.

�

<19> Task: Continue the notation from the previous Task. Now show that B(K) is
big enough for integrals of H-functions to be well defined.

(i) If K ∈ K with 1K = inf{hn : n ∈ N} and t > 0, show that

infn∈N
(
hn(x)− n (h(x)− t)+

)
+

= 1{x ∈ K : h(x) ≤ t}.

Deduce that K{h ≤ t} ∈ K and {h ≤ t} ∈ F(K).

(ii) If h ∈ H and 1 ≥ h ≥ 0 show that

h(x) = limk→∞ k
−1
∑k

j=1
1{h(x) ≥ j/k}.

Deduce that h is B(K)-measurable.

(iii) By splitting into positive and negative parts and taking limits of suit-
ably truncated functions, show that every h in H is B(K)-measurable.

�

I could define µ(K) for K ∈ K by taking limits of T (hn) for sequences
hn ↓ 1K but it seems cleaner to define µ in a way that shows it does not de-
pend on the choice of the decreasing sequence {hn}.

First some preliminaries showing how linearity of T implies some additiv-
ity properties for µ.

<20> Task: For K ∈ K define µK := inf{T (h) : 1K ≤ h ∈ H}.

(i) If hn ↓ 1K and h ≥ 1K show that hn ∨ h ↓ h. Deduce that

T (hn) ≤ T (hn ∨ h) ↓ T (h).

Conclude that T (hn) ↓ µK.

Measure and Integral ./ Draft: 7 Jan 2018 c©David Pollard



§4 Linear functionals as integrals 11

(ii) Suppose K2 and L are disjoint K-sets and {fn} and {gn} are sequences
of H functions for which fn ↓ 1K2 and gn ↓ 1L. Show that fn ∨ gn ↓
1K2∪L and fn ∧ gn ↓ 0. From the equality

T (fn) + T (gn) = T (fn ∨ gn) + T (fn ∧ gn)

deduce that µ(K2) + µ(L) = µ(K2 ∪ L).

�

Now we get to the heart of the proof, the K-tightness and σ-smoothness.

<21> Task:

(i) For K-sets K1,K2 with K1 ⊇ K2 deduce that µ(K1) ≥ µ(K2) +
µ∗(K1\K2).

(ii) Suppose K1,K2 ∈ K and K1 ⊇ K2. Argue as follows to show that
µ(K1) ≤ µ(K2) + µ∗(K1\K2), thus proving that µ is K-tight.

(a) Suppose 1K2 ≤ g ∈ H and t ∈ (0, 1). Define L = K1{g ≤ t}. Show
that L ∈ K and L ⊆ K1\K2. Thus µL ≤ µ∗(K1\K2).

(b) Suppose 1L ≤ h ∈ H. Show that h + (g/t) ≥ 1K1 . Deduce that
T (h) + t−1T (g) ≥ µK1.

(c) Take an infimum over h then over g, then let t increase to 1.

�

<22> Task:
Prove that µ is sigma-smooth at ∅. Argue as follows. Suppose Kn ↓ ∅ and

hi,j ↓ 1Ki as j → ∞, for each fixed i. Show that hn := mini,j≤n hi,j ≥ 1Kn

and hn ↓ 0 as n → ∞. (If x ∈ Kc
n then hi,j(x) ↓ 0 if i ≥ n.) Deduce that

µKn ≤ T (hn)→ 0. ]

�

Theorem <4> now guarantees that µ extends to a K-inner-regular mea-
sure µ̃ on a sigma-field S∗ that is larger than B(K). Each function in H is B(K)-
measurable.

To prove that each h in H is µ̃-integrable and that T (h) = µ̃(h) it suffices
to consider the case where h ≥ 0 (split into h+ − h−) and to assume h is
bounded (cf. h ∧ n ↑ h). Thus we may assume 1 ≥ h ≥ 0.

The argument uses an approximation by simple functions. Let k be a pos-
itive integer. Define fk by rounding h down to an integer multiple of k−1.
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§4 Linear functionals as integrals 12

That is,

fk(x) = k−1
∑k

j=1
1{x ∈ Lj} where Lj = {h ≥ j/k}.

You might remember that fk(x) ≤ h(x) ≤ fk(x)+k−1 for every x. We need to
sharpen the upper bound slightly, replacing the k−1 by a function in H. You
should check that

fk(x) ≤ h(x) ≤ h(x) ≤ fk(x) +
(
h(x) ∧ k−1

)
for each x.

If k = 2m, then fk increases monotonely to h as m increases. Here are the
details.

<23> Task: For fixed k find H functions hj,n for which hj,n(x) ↓ 1{x ∈ Lj} as n →
∞. Define hn(x) := k−1

∑k
j=1 hj,n(x).

(i) Show that hn(x) ↓ fk(x) as n→∞ and

T (hn) ↓ k−1
∑k

j=1
µLj = µ̃(fk).

(ii) Show that h ∨ hn ↓ h. Deduce that

T (h) = limn T (h ∨ hn) ≥ limn T (hn) = µ̃(fk).

Pass to the limit as k →∞ to conclude that T (h) ≥ µ̃(h).

(iii) Show that (h ∧ k−1) + hn ≥ h. Apply T to both sides of the inequality,
let n tend to infinity, then let k tend to ∞ to deduce that µ̃h ≥ T (h).

(iv) (uniqueness) Suppose ν is another K-inner-regular measure for which T (h) =
ν(h) for each h in H. If K ∈ K and hn ↓ 1K show that

νK = limn ν(hn) = limn T (hn) = µ(K).

The measures ν and µ must agree for every measurable set B for which νB =
sup{νK : B ⊇ K ∈ K} and µB = sup{µK : B ⊇ K ∈ K}.

�
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5 Extension to a larger sigma-field
S:tau

6 Measures on locally compact spaces
S:loc.cp

Bourbaki (2004a, page INT III.7) defined a measure (possibly signed or complex-
valued) on a locally compact space to be a continuous linear functional on the
vector space of continuous (complex-valued) functions with compact support.
That is, for Bourbaki the integral as a linear functional was the primary con-
cept and the representation as an integral with respect to a countably addi-
tive measure was secondary.
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