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MISCELLANEA 

Studies in the history of probability and statistics 
VI. A note on the early solutions of the problem of the duration of play 

By A. R. THATCHER 

It is now just 300 years since the publication by Huygens of the first result on the famous problem which 
became known as the Duration of Play. The aim of this note is to summarize the early development of 
this problem and to show how easily some of the solutions found at the beginning of the eighteenth 
century can be linked with modem work on sequential tests, random walks and certain storage problems. 

We use throughout the following notation. Call the two players A and B, and let their chances of 
winning a game bep and q = 1 -p, respectively. A starts with a counters and B starts with b counters, and 
after each game the loser hands one counter to the winner. It is desired to find first the probability Pa 
that A will eventually lose all his counters without having previously won all B's, and more generally the 
probability P.,n that this will happen within n games. Pb and Pb n are defined similarly. Pa," + Pb,n is 
the probability that the play will terminate (with the 'ruin' of one of the players) within n games. It can 
be shown that the play must end sooner or later, so that Pa+ Pb = 1. 

In 1657 Huygens gave without proof, in the fifth and last problem of his treatise De ratiociniis in ludo 
aleae, the numerical value for Pa in a case where a = b = 12 and where p and q had particular values. 
The general result for Pa was found by James Bernoulli, who died in 1705, but it remained in manuscript 
until it was published 8 years later in his Ars Conjectandi; Bernoulli says that the proof is laborious and 
leaves it to the reader. Before the Ars Conjectandi appeared, however, de Moivre had found a simple 
derivation independently and published it in his treatise De Mensura Sortis (1711). 

De Moivre's original proof, which was later reproduced in his Doctrine of Chances (see 1711, pp. 227-8; 
1718, pp. 23-4; 1738, pp. 45-6; 1756, pp. 52-3), is very ingenious and so much shorter than the demon- 
strations usually given in modem textbooks that it is worth quoting. Its essence is as follows. Imagine 
that each player starts with his counters before him in a pile, and that nominal values are assigned to the 
counters in the following manner. A's bottom counter is given the nominal value q/p; the next is given 
the nominal value (q/p)2, and so on until his top counter which has the nominal value (q/p)a. B's top 
counter is valued (q/p)a+l, and so on downwards until his bottom counter which is valued (q/p)a+b. After 
each game the loser's top counter is transferred to the top of the winner's pile, and it is always the top 
counter which is staked for the next game. Then in terms of the nominal values B's stake is always q/p 
times A's, so that at every game each player's nominal expectation is nil. This remains true throughout 
the play; therefore A's chance of winning all B's counters, multiplied by his nominal gain if he does so, 
must equal B's chance multiplied by B's nominal gain. Thus 

Pb(() + (- + + (Pa( + ((p) (p)a) 

The use of Pa + Pb = 1 now gives immediately 

(q/p)p 1 (1) 
(q/p) a+b...1 

and this is the probability of the 'gambler's ruin'. 
In terms of the counters, A's total expected gain is bPb - aPa, while his expectation per game is p - q. 

These obvious facts are indeed only special cases of a more general result given by de Moivre (1718, 
pp. 135-6; 1738, pp. 48-9; 1756, pp. 55-6). De Moivre does not actually divide one expression by the 
other, but, since the total expectation equals the expectation per game times the expected number of 
games, this division is all that is required in order to get the expected number of games 

bPb -aPa 
E(N) = (2) 

p-q 
De Moivre was also the fir~t to discover and publish a general method for calculating Pa,n + Pb, n, thus 

finding the chance that the play would terminate within n games. For the case where a is infinite (so that 
Pa, n = 0) and n - b is odd, he found 

Pb n = first i(n-b + 1) terms of (p + q)n + first i(n-b + 1) terms of (plq)b (q +p)n. (3) 
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516 Miscellanea 
This solution, with a similar one for the case where n - b is even, was given without proof in his De Mensura 
Sortis and later in The Doctrine of Chances (1711, p. 262; 1718, pp. 119-20; 1738, p. 179; 1756, pp. 208-9). 
Fieller (1931) has drawn attention to this result and also provided a simple and elegant proof. 

De Moivre's first solution of the general problem of calculating Pa, n + Pb, n when both a and b are finite 
(1711, p. 261; 1718, pp.113-14; 1738, stated incorrectly on pp. 173-4; 1756, p.203) called for the per- 
formance of n - 1 multiplications and the rejection of certain terms during the process. For moderate n 
the calculation is not so tedious as appears at first sight, and it has the advantage of giving the answer 
reduced to the smallest number of terms; as de Moivre later pointed out, the rejected terms can also be 
used to obtain Pa , and Pb n separately. 

However, a few months before de Moivre's method actually appeared (for the Philosophical Transac- 
tions for 1711 were delayed in the press), a different solution giving Pa, n and Pb, n separately had been 
found and was soon published by de Montmort (1713). This result is of particular interest because it 
provides one of the easiest solutions of the problem, since the series which can be derived from it by using 
modern tables is rapidly convergent over the range of values of n where the play is likely to terminate. 

In 1710 de Montmort found a method for calculating Pa, n and Pb, n for the case p = q. He sent some 
numerical results to John Bernoulli, who passed the letter to his nephew Nicholas. In a reply dated 
26 February 1711, published by de Montmort (1713, p. 308 et seq.), Nicholas Bernoulli gave without 
proof the general solution for the case p * q; in modern notation it can be written as follows: 

b n = (pS t+bqts2 (n.) (p n-b-2ts-qi + qn-b-2t-ipi) 

- E (pts+sqts+a E (n) (pn-b-2ts-2a-iqi + qn-b-2ts-2aip)) (4) 

In this formula s = a + b; the summation over i > 0 continues until the terms in the series in each curly 
bracket, re-arranged in descending powers of p, meet in the middle (the middle term counting only once 
if n - b is even); and the summation over t covers all values > 0 which leave non-negative exponents 
within the summation over i on the line concerned. Bernoulli stated the result for n - b even, but in 
fact (4) is also valid if n - b is odd. 

Not content with this, Nicholas Bernoulli confirmed that the limit of (4) as n -> oo gives the correct 
value for Pb. He does not give his method but it is not difficult to guess; if for example p > q it is only 
necessary to re-write the two lines of (4) as 

p-tsqts[pn + npn-lq + +p2ts+bqn-2st-b] 

_ p-ts-aqts+a[pn + npn-lq +... + p2ts+2a+bqn-2ts-2a-b] (5) 
t 

As n -> oo the sums in each square bracket tend to 1; this follows from (James) Bernoulli's Theorem, 
which at the time had not been published but which was known to Nicholas. The expression thus reduces 
to two geometric series, and is immediately seen to agree with (1) above. In passing, it may be noted that 
as a -- oo the expression (4) reduces to de Moivre's expression (3). 

When de Montmort saw this extraordinary solution he admitted that he could not follow it (this was 
partly because Bernoulli had inadvertently uipd one symbol in two senses), and remarked: 'votre 
formule m'etonnepour sa generalit6' (1713, p. 316). Later, in comparing it with his own, he said: 'je n'ai 
eu en viue que la supposition des hazards 6gaux pour l'un et pour l'autre Joueur, au lieu que vous les 
supposes dans un rapport quelconque' (1713, p. 345). De Montmort's solution, which he then describes 
briefly, consisted of a method of picking out the binomial coefficients in (4) from Pascal's triangle; this 
was of course sufficient when p = q, and was in itself a remarkable result to have found. Nevertheless, it 
seems clear that the solution (4) of the general case p * q, though often described as de Montmort's, was 
in fact found first by Nicholas Bernoulli. 

De Montmort reproduced (4) in the body of his book, gave an example and added a most interesting 
though far from rigorous demonstration (1713, pp. 268-72). De Moivre at first called the result 'very 
handsom' (1718, p. 122), but later criticized de Montmort's statement of it (which indeed is not entirely 
correct) and seems to hint that he had found the same method of solution before the year 1711 (see 1738, 
pp. 181-2; 1756, pp. 210-1 1). This is certainly possible, though it may be doubted whether de Moivre had 
carried the investigation of (4) as far as Bernoulli; perhaps he used it in particular cases, but did not 
pursue the matter because his own result gave Pa n + Pb. n in a smaller number of terms. 

De Moivre later solved the Duration of Play problem in two further ways, and in the course of his work 
made an extensive investigation of recurring series (which he was the first to explore). His results included 
the partial fraction expansion of a generating function (1738, pp. 197-99; 1756, pp. 224-7); he found the 
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Miscellanea 517 
probability of runs of successes (1738, pp. 243-8; 1756, pp. 254-9), and of course made the original 
derivation of the normal distribution (1738, pp. 235-43; 1756, pp. 243-50). On the Duration of Play 
problem itself he expressed Pb, n as a recurring series with fewer terms than (4); and finally he discovered 
the first results on the trigonometrical solution (see Feller, 1950, p. 292, equation 5.7), including the 
asymptotic form for Pb,n when a = b and p = q. For fuller details of his work, and of its subsequent 
development by Laplace and many others, the reader is referred to Todhunter (1865) and Fieller (1931). 

It remains to show the link between these early solutions and modern work. This stems from the well- 
known fact that the Duration of Play situation can be regarded as a linear random walk with two absorb- 
ing barriers, such that the movement of the particle at each jump has a distribution with mean It = p - q 
and variance o-2 = 4pq. To complete the comparison a simple approximation is required, namely 

(p/q) A exp (2A/jl f2), (6) 

which can be shown to apply with sufficient accuracy in the cases for which it will be required. 
If then in equations (1) and (2) we make the substitutions (6) andp - q = A we shall obtain approxima- 

tions for the probability of absorption at a given barrier, and for the expected number of steps before 
absorption at either barrier, in the corresponding random walk; and under the conditions of the central 
limit theorem these will be valid for all walks with given finite ,& and cr, provided that the number of steps 
is safficiently large. It can be seen by inspection that the transformed version of equations (1) and (2) are 
in fact the same as Wald's approximations for the operating characteristic and average sample number of 
a sequential test, in the form quoted by Page (1954, equations 5, 7). 

We can similarly transform (3), making the normal approximation to the binomial expressions; it will 
be found that the result agrees with that given by Bartlett (1946, equation 8), obtained as the solution of 
a differential equation for the diffusion process. It is of interest to note that the same result can also be 
used to find a quick approximate solution of a storage problem considered in a recent paper by Anis 
(1956). This concerns a reservoir, of unlimited capacity, which has initial water level x; this level varies 
each year by an amount distributed with zero mean and unit variance. WVhen n and x are sufficiently 
large we can ignore the end-effects and assume that the probability that the reservoir will run dry within 
n years is approximately the same as the probability that B will lose b = x counters within n trials (where 
a is infinite and p = q = i). By de Moivre's result (3) this probability will be twice the sum of the first 
j(n - x + 1) terms of (j + j)n. Hence, for large n and x the probability that the reservoir will not run dry 

r xIV/n 
within n years can be expressed approximately as 2 J eAt'/V(27r) dt, and it is easy to verify that 

this distribution has the same moment ratios as the limiting values found by Anis. 
Finally, we come to Nicholas Bernoulli's general solution of the Duration of Play. If for any value of 

t either line of (4) is arranged in descending powers of p, it will be found to be the sum of multiples of 
two binomial expressions in the same way as (3)-see also Fieller (1931, equation 10.1), who proceeds to 
obtain the exact solution of the problem in a convenient form as a series of multiples of incomplete 
beta-functions, and also provides a rigorous proof. 

The application of (6) and the normal approxiination to the binomial puts the solution in the simple 

approximate form EA iJ 1 5e-ix' dx; this series agrees with the (exact) result given by Bartlett (1946, 
,Ji (27T) 

equiation 17) for the diffusion process. In view of the usefulness of this series it is worth repeating here 
for completeness 

Pb,,n =F(b)-w(-a)F(b+2a)+w(-a-b)F(3b+2a)-w(-2a-b)F(3b+4a)+..., (7) 

where F(A)-Q4- +w(A)Q (r ) 

r0 1 
Q(A)- 2 eA-T dx, 

JA V(27T) 
w(A) exp (2A,#/or2). 

The corresponding series for Pa, n is found by interchanging a with b and changing the sign of ,t in the 
definitions of F and w. 

It will be found that (7) converges rapidly over the range of n where the process is likely to terminate, 
and so (as suggested by Bartlett) provides a rapid approximation for the probability that a particle 
starting at the origin, with a jump distribution having mean ,t and variance cr2, will reach x = b (without 
having previously been absorbed at x = - a) within n jurnps. It can similarly be used to find the chance 
that a linear sequential test will end within n trials, or that a finite reservoir with random net input will 
either dry up or overflow within a given time. 
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Optimal samlpling for quota fulfilment 

BY N. L. JOHNSON 
University College London 

1. The problem to be discussed in this paper arises in the following way. It is desired to obtain 
a sample from a stratified population in such a way that there are exactly mi individuals from stratum 
ai, (i = 1, ..., k). It is more convenient to take a random sample from the whole population, and to 
ascertain subsequently the strata to which the chosen individuals belong, than to search for individuals 
belonging to specified strata. Therefore, a first sample of N individuals is chosen without regard to 
stratification and any shortfall is made up by a further set of samples, each restricted to one of the 
deficient strata, and of such a size as to provide the required number of individuals from each of the 
strata. Thus, if the first sample of N contains ni( < mi) individuals from stratum 0i then the subsequent 
sample from this stratum will contain mi - ni individuals but if ni > mi, no subsequent sample from this 
stratum will be required. 

If c is the cost per individual in the first (unrestricted) sample, and ci the cost per individual for 
a sample restricted to stratum coi, then the expected cost of obtaining the complete sample is 

k 
C1 = oN + ci e(mni-ni I ni < m,) Pr{n <m}, (m1) 

t=1 

where n, is the number of observations included in wi in the first unrestricted sample. If the unused 
individuals in stratum w2i with numbers in excess of requirements are worth c' each the expected cost is 

k 
C2 = cN + [cp (m,i-ni I ni < mi) Pr{nj < mj + ct '(mi- ni I n,>. m,) Pr{n > mi}]. (2) 

i=i 

C1 can, of course, be regarded as a special case of C2. 
2. If it is supposed that the j oint distribution of nl, n2, . .., nk is multinomial with parameters p1, P2, . .. I P 

(as would be appropriate if sampling from a large population with proportions P1,P2 ... ,Pk in strata 
w1,1 w)2, . .. (k)k, respectively, were being considered) then 

d(mi -ni) = min-Npi 
and (2) can be written 

k k 
C2 = cN + ( (-cc() i(m- n- I ni < mi) Pr{nN < mip + 2)c(m Npi). (2a) 

i-1 i=l1 

Using Gruder's formula 0 (r -Np) prqN-r = -M pmqN-m+l 

C2 can be expressed in the form 

C2 = cN+ z (Ci +c') [_ _-Npi) IN\;. +mi(\) p, iqiN ^g + Zc'(mj-Npj). (3) 
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