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Preface

This book began life as a set of handwritten notes, distributed to students in my
one-semester graduate course on probability theory, a course that had humble aims:
to help the students understand results such as the strong law of large numbers, the
central limit theorem, conditioning, and some martingale theory. Along the way
they could expect to learn a little measure theory and maybe even a smattering of
functional analysis, but not as much as they would learn from a course on Measure
Theory or Functional Analysis.

In recent years the audience has consisted mainly of graduate students in
statistics and economics, most of whom have not studied measure theory. Most of
them have no intention of studying measure theory systematically, or of becoming
professional probabilists, but they do want to learn some rigorous probability
theory—in one semester.

Faced with the reality of an audience that might have neither the time nor
the inclination to devote itself completely to my favorite subject, I sought to
compress the essentials into a course as self-contained as I could make it. I tried
to pack into the first few weeks of the semester a crash course in measure theory,
with supplementary exercises and a whirlwind exposition (Appendix A) for the
enthusiasts. I tried to eliminate duplication of mathematical effort if it served no
useful role. After many years of chopping and compressing, the material that I most
wanted to cover all fit into a one-semester course, divided into 25 lectures, each
lasting from 60 to 75 minutes. My handwritten notes filled fewer than a hundred
pages.

I had every intention of making my little stack of notes into a little book. But I
couldn’t resist expanding a bit here and a bit there, adding useful reference material,
spelling out ideas that I had struggled with on first acquaintance, slipping in extra
topics that my students have seemed to need when writing dissertations, and pulling
in material from other courses I have taught and neat tricks I have learned from my
friends. And soon it wasn’t so little any more.

Many of the additions ended up in starred Sections, which contain harder
material or topics that can be skipped over without loss of continuity.

My treatment includes a few eccentricities that might upset some of my
professional colleagues. My most obvious departure from tradition is in the use
of linear functional notation for expectations, an approach I first encountered in
books by de Finetti. I attempt to explain the virtues of this notation in the first
two Chapters. Another slight novelty—at least for anyone already exposed to the
Kolmogorov interpretation of conditional expectations—appears in my treatment
of conditioning, in Chapter 5. For many years I have worried about the wide gap
between the free-wheeling conditioning calculations of an elementary probability
course and the formal manipulations demanded by rigor. I claim that a treatment
starting from the idea of conditional distributions offers one way of bridging the gap,
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at least for many of the statistical applications of conditioning that have troubled me
the most.

The twelve Chapters and six Appendixes contain general explanations, remarks,
opinions, and blocks of more formal material. Theorems and Lemmas contain the
most important mathematical details. Examples contain gentler, or less formal,
explanations and illustrations. Supporting theoretical material is presented either
in the form of Exercises, with terse solutions, or as Problems (at the ends of the
Chapters) that work step-by-step through material that missed the cutoff as Exercises,
Lemmas, or Theorems. Some Problems are routine, to give students an opportunity
to digest the ideas in the text without great mental effort; some Problems are hard.

A possible one-semester course

Here is a list of the material that I usually try to cover in the one-semester
graduate course.

Chapter 1: Spend one lecture on why measure theory is worth the effort, using
a few of the Examples as illustrations. Introduce de Finetti notation, identifying
sets with their indicator functions and writingP for both probabilities of sets and
expectations of random variables. Mention, very briefly, the fair price Section as an
alternative to the frequency interpretation.

Chapter 2: Cover the unstarred Sections carefully, but omitting many details
from the Examples. Postpone Section 7 until Chapter 3. Postpone Section 8
until Chapter 6. Describe briefly the generating class theorem for functions, from
Section 11, without proofs.

Chapter 3: Cover Section 1, explaining the connection with the elementary notion
of a density. Take a short excursion into Hilbert space (explaining the projection
theorem as an extension of the result for Euclidean spaces) before presenting the
simple version of Radon-Nikodym. Mention briefly the classical concept of absolute
continuity, but give no details. Maybe say something about total variation.

Chapter 4: Cover Sections 1 and 2, leaving details of some arguments to the
students. Give a reminder about generating classes of functions. Describe the
construction ofµ ⊗ �, only for a finite kernel�, via the iterated integral. Cover
product measures, using some of the Examples from Section 4. Explain the need for
the blocking idea from Section 6, using the Maximal Inequality to preview the idea
of a stopping time. Mention the truncation idea behind the version of the SLLN for
independent, identically distributed random variables with finite first moments, but
skip most of the proof.

Chapter 5: Discuss Section 1 carefully. Cover the high points of Sections 2
through 4. (They could be skipped without too much loss of continuity, but I prefer
not to move straight into Kolmogorov conditioning.) Cover Section 6.
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Chapter 6: Cover Sections 1 through 4, but skipping over some Examples.
Characterize uniformly integrable martingales, using Section 6 and some of the
material postponed from Section 8 of Chapter 2, unless short of time.

Chapter 7: Cover the first four Sections, skipping some of the examples of central
limit theorems near the end of Section 2. Downplay multivariate results.

Chapter 8: Cover Sections 1, 2, 4, and 6.

If time is left over, cover a topic from the remaining Chapters.
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haustible patience with an author who could never stop tinkering.

David Pollard
New Haven
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Chapter 1

Motivation
SECTION 1 offers some reasons for why anyone who uses probability should know about

the measure theoretic approach.
SECTION 2 describes some of the added complications, and some of the compensating

benefits that come with the rigorous treatment of probabilities as measures.
SECTION 3 argues that there are advantages in approaching the study of probability theory

via expectations, interpreted as linear functionals, as the basic concept.
SECTION 4 describes the de Finetti convention of identifying a set with its indicator

function, and of using the same symbol for a probability measure and its corresponding
expectation.

SECTION *5 presents a fair-price interpretation of probability, which emphasizes the
linearity properties of expectations. The interpretation is sometimes a useful guide to
intuition.

1. Why bother with measure theory?

Following the appearance of the little book by Kolmogorov (1933), which set forth
a measure theoretic foundation for probability theory, it has been widely accepted
that probabilities should be studied as special sorts of measures. (More or less
true—see the Notes to the Chapter.) Anyone who wants to understand modern
probability theory will have to learn something about measures and integrals, but it
takes surprisingly little to get started.

For a rigorous treatment of probability, the measure theoretic approach is a vast
improvement over the arguments usually presented in undergraduate courses. Let
me remind you of some difficulties with the typical introduction to probability.

Independence

There are various elementary definitions of independence for random variables. For
example, one can require factorization of distribution functions,

P{X ≤ x, Y ≤ y} = P{X ≤ x} P{Y ≤ y} for all real x, y.

The problem with this definition is that one needs to be able to calculate distribution
functions, which can make it impossible to establish rigorously some desirable
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properties of independence. For example, suppose X1, . . . , X4 are independent
random variables. How would you show that

Y = X1 X2

[
log

(
X2

1 + X2
2

|X1| + |X2|

)
+ |X1|3 + X3

2

X4
1 + X4

2

]
is independent of

Z = sin
[

X3 + X2
3 + X3 X4 + X2

4 +
√

X4
3 + X4

4

]
,

by means of distribution functions? Somehow you would need to express events
{Y ≤ y, Z ≤ z} in terms of the events {Xi ≤ xi }, which is not an easy task. (If you
did figure out how to do it, I could easily make up more taxing examples.)

You might also try to define independence via factorization of joint density
functions, but I could invent further examples to make your life miserable, such as
problems where the joint distribution of the random variables are not even given
by densities. And if you could grind out the joint densities, probably by means of
horrible calculations with Jacobians, you might end up with the mistaken impression
that independence had something to do with the smoothness of the transformations.

The difficulty disappears in a measure theoretic treatment, as you will see in
Chapter 4. Facts about independence correspond to facts about product measures.

Discrete versus continuous

Most introductory texts offer proofs of the Tchebychev inequality,

P{|X − µ| ≥ ε} ≤ var(X)/ε2,

where µ denotes the expected value of X . Many texts even offer two proofs, one for
the discrete case and another for the continuous case. Indeed, introductory courses
tend to split into at least two segments. First one establishes all manner of results
for discrete random variables and then one reproves almost the same results for
random variables with densities.

Unnecessary distinctions between discrete and continuous distributions disappear
in a measure theoretic treatment, as you will see in Chapter 3.

Univariate versus multivariate

The unnecessary repetition does not stop with the discrete/continuous dichotomy.
After one masters formulae for functions of a single random variable, the whole
process starts over for several random variables. The univariate definitions acquire a
prefix joint, leading to a whole host of new exercises in multivariate calculus: joint
densities, Jacobians, multiple integrals, joint moment generating functions, and so
on.

Again the distinctions largely disappear in a measure theoretic treatment.
Distributions are just image measures; joint distributions are just image measures for
maps into product spaces; the same definitions and theorems apply in both cases.
One saves a huge amount of unnecessary repetition by recognizing the role of image
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measures (described in Chapter 2) and recognizing joint distributions as measures
on product spaces (described in Chapter 4).

Approximation of distributions

Roughly speaking, the central limit theorem asserts:
If ξ1, . . . , ξn are independent random variables with zero expected values and
variances summing to one, and if none of the ξi makes too large a contribution
to their sum, then ξ1 + . . . + ξn is approximately N (0, 1) distributed.

What exactly does that mean? How can something with a discrete distribution,
such as a standardized Binomial, be approximated by a smooth normal distribution?
The traditional answer (which is sometimes presented explicitly in introductory
texts) involves pointwise convergence of distribution functions of random variables;
but the central limit theorem is seldom established (even in introductory texts) by
checking convergence of distribution functions. Instead, when proofs are given, they
typically involve checking of pointwise convergence for some sort of generating
function. The proof of the equivalence between convergence in distribution and
pointwise convergence of generating functions is usually omitted. The treatment of
convergence in distribution for random vectors is even murkier.

As you will see in Chapter 7, it is far cleaner to start from a definition involving
convergence of expectations of “smooth functions” of the random variables, an
approach that covers convergence in distribution for random variables, random
vectors, and even random elements of metric spaces, all within a single framework.

***
In the long run the measure theoretic approach will save you much work and

help you avoid wasted effort with unnecessary distinctions.

2. The cost and benefit of rigor

In traditional terminology, probabilities are numbers in the range [0, 1] attached to
events, that is, to subsets of a sample space 
. They satisfy the rules

(i) P∅ = 0 and P
 = 1

(ii) for disjoint events A1, A2, . . ., the probability of their union, P (∪i Ai ), is equal
to

∑
i PAi , the sum of the probabilities of the individual events.

When teaching introductory courses, I find that it pays to be a little vague
about the meaning of the dots in (ii), explaining only that it lets us calculate the
probability of an event by breaking it into disjoint pieces whose probabilities are
summed. Probabilities add up in the same way as lengths, areas, volumes, and
masses. The fact that we sometimes need a countable infinity of pieces (as in
calculations involving potentially infinite sequences of coin tosses, for example) is
best passed off as an obvious extension of the method for an arbitrarily large, finite
number of pieces.

In fact the extension is not at all obvious, mathematically speaking. As
explained by Hawkins (1979), the possibility of having the additivity property (ii)
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hold for countable collections of disjoint events, a property known officially as
countable additivity, is one of the great discoveries of modern mathematics. In his
1902 doctoral dissertation, Henri Lebesgue invented a method for defining lengths
of complicated subsets of the real line, in a countably additive way. The definition
has the subtle feature that not every subset has a length. Indeed, under the usual
axioms of set theory, it is impossible to extend the concept of length to all subsets
of the real line while preserving countable additivity.

The same subtlety carries over to probability theory. In general, the collection
of events to which countably additive probabilities are assigned cannot include all
subsets of the sample space. The domain of the set function P (the probability
measure) is usually just a sigma-field, a collection of subsets of 
 with properties
that will be defined in Chapter 2.

Many probabilistic ideas are greatly simplified by reformulation as properties
of sigma-fields. For example, the unhelpful multitude of possible definitions for
independence coalesce nicely into a single concept of independence for sigma-fields.

The sigma-field limitation turns out to be less of a disadvantage than might be
feared. In fact, it has positive advantages when we wish to prove some probabilistic
fact about all events in some sigma-field, A. The obvious line of attack—first find an
explicit representation for the typical member of A, then check the desired property
directly—usually fails. Instead, as you will see in Chapter 2, an indirect approach
often succeeds.

(a) Show directly that the desired property holds for all events in some subclass E

of “simpler sets” from A.

(b) Show that A is the smallest sigma-field for which A ⊇ E.

(c) Show that the desired property is preserved under various set theoretic
operations. For example, it might be possible to show that if two events have
the property then so does their union.

(d) Deduce from (c) that the collection B of all events with the property forms
a sigma-field of subsets of 
. That is, B is a sigma-field, which, by (a), has
the property B ⊇ E.

(e) Conclude from (b) and (d) that B ⊇ A. That is, the property holds for all
members of A.

Remark. Don’t worry about the details for the moment. I include the outline
in this Chapter just to give the flavor of a typical measure theoretic proof. I have
found that some students have trouble adapting to this style of argument.

The indirect argument might seem complicated, but, with the help of a few key
theorems, it actually becomes routine. In the literature, it is not unusual to see
applications abbreviated to a remark like “a simple generating class argument shows
. . . ,” with the reader left to fill in the routine details.

Lebesgue applied his definition of length (now known as Lebesgue measure)
to the construction of an integral, extending and improving on the Riemann
integral. Subsequent generalizations of Lebesgue’s concept of measure (as in
the 1913 paper of Radon and other developments described in the Epilogue to
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Hawkins 1979) eventually opened the way for Kolmogorov to identify probabilities
with measures on sigma-fields of events on general sample spaces. From the Preface
to Kolmogorov (1933), in the 1950 translation by Morrison:

The purpose of this monograph is to give an axiomatic foundation for the
theory of probability. The author set himself the task of putting in their natural
place, among the general notions of modern mathematics, the basic concepts of
probability theory—concepts which until recently were considered to be quite
peculiar.

This task would have been a rather hopeless one before the introduction
of Lebesgue’s theories of measure and integration. However, after Lebesgue’s
publication of his investigations, the analogies between measure of a set and
probability of an event, and between integral of a function and mathematical
expectation of a random variable, became apparent. These analogies allowed of
further extensions; thus, for example, various properties of independent random
variables were seen to be in complete analogy with the corresponding properties
of orthogonal functions. But if probability theory was to be based on the above
analogies, it still was necessary to make the theories of measure and integration
independent of the geometric elements which were in the foreground with
Lebesgue. This has been done by Fréchet.

While a conception of probability theory based on the above general
viewpoints has been current for some time among certain mathematicians, there
was lacking a complete exposition of the whole system, free of extraneous
complications. (Cf., however, the book by Fréchet . . . )

Kolmogorov identified random variables with a class of real-valued functions
(the measurable functions) possessing properties allowing them to coexist com-
fortably with the sigma-field. Thereby he was also able to identify the expectation
operation as a special case of integration with respect to a measure. For the newly
restricted class of random variables, in addition to the traditional properties

(i) E(c1 X1 + c2 X2) = c1E(X1) + c2E(X2), for constants c1 and c2,

(ii) E(X) ≥ E(Y ) if X ≥ Y ,

he could benefit from further properties implied by the countable additivity of the
probability measure.

As with the sigma-field requirement for events, the measurability restriction on
the random variables came with benefits. In modern terminology, no longer was E

just an increasing linear functional on the space of real random variables (with
some restrictions to avoid problems with infinities), but also it had acquired some
continuity properties, making possible a rigorous treatment of limiting operations in
probability theory.

3. Where to start: probabilities or expectations?

From the example set by Lebesgue and Kolmogorov, it would seem natural to start
with probabilities of events, then extend, via the operation of integration, to the study
of expectations of random variables. Indeed, in many parts of the mathematical
world that is the way it goes: probabilities are the basic quantities, from which
expectations of random variables are derived by various approximation arguments.
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The apparently natural approach is by no means the only possibility, as anyone
brought up on the works of the fictitious French author Bourbaki could affirm.
(The treatment of measure theory, culminating with Bourbaki 1969, started from
integrals defined as linear functionals on appropriate spaces of functions.) Moreover,
historically speaking, expectation has a strong claim to being the preferred starting
point for a theory of probability. For instance, in his discussion of the 1657 book
Calculating in Games of Chance by Christian Huygens, Hacking (1978, page 97)
commented:

The fair prices worked out by Huygens are just what we would call the
expectations of the corresponding gambles. His approach made expectation a
more basic concept than probability, and this remained so for about a century.

The fair price interpretation is sketched in Section 5.
The measure theoretic history of integrals as linear functionals also extends

back to the early years of the twentieth century, starting with Daniell (1918), who
developed a general theory of integration via extension of linear functionals from
small spaces of functions to larger spaces. It is also significant that, in one of the
greatest triumphs of measure theory, Wiener (1923, Section 10) defined what is now
known as Wiener measure (thereby providing a rigorous basis for the mathematical
theory of Brownian motion) as an averaging operation for functionals defined on
Brownian motion paths, citing Daniell (1919) for the basic extension theorem.

There are even better reasons than historical precedent for working with expec-
tations as the basic concept. Whittle (1992), in the Preface to an elegant, intermediate
level treatment of Probability via Expectations, presented some arguments:

(i) To begin with, people probably have a better intuition for what is meant by
an ‘average value’ than for what is meant by a ‘probability.’

(ii) Certain important topics, such as optimization and approximation problems,
can be introduced and treated very quickly, just because they are phrased in
terms of expectations.

(iii) Most elementary treatments are bedeviled by the apparent need to ring
the changes of a particular proof or discussion for all the special cases of
continuous or discrete distribution, scalar or vector variables, etc. In the
expectations approach these are indeed seen as special cases, which can be
treated with uniformity and economy.

His list continued. I would add that:

(a) It is often easier to work with the linearity properties of integrals than with
the additivity properties of measures. For example, many useful probability
inequalities are but thinly disguised consequences of pointwise inequalities,
translated into probability form by the linearity and increasing properties of
expectations.

(b) The linear functional approach, via expectations, can save needless repetition
of arguments. Some theorems about probability measures, as set functions,
are just special cases of more general results about expectations.
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(c) When constructing new probability measures, we save work by defining
the integral of measurable functions directly, rather than passing through
the preliminary step of building the set function then establishing theorems
about the corresponding integrals. As you will see repeatedly, definitions and
theorems sometimes collapse into a single operation when expressed directly
in terms of expectations, or integrals.

***
I will explain the essentials of measure theory in Chapter 2, starting from the

traditional set-function approach but working as quickly as I can towards systematic
use of expectations.

4. The de Finetti notation

The advantages of treating expectation as the basic concept are accentuated by
the use of an elegant notation strongly advocated by de Finetti (1972, 1974).
Knowing that many traditionally trained probabilists and statisticians find the
notation shocking, I will introduce it slowly, in an effort to explain why it is worth
at least a consideration. (Immediate enthusiastic acceptance is more than I could
hope for.)

Ordinary algebra is easier than Boolean algebra. The correspondence A ↔ IA

between subsets A of a fixed set X and their indicator functions,

IA(x) =
{

1 if x ∈ A,
0 if x ∈ Ac,

transforms Boolean algebra into ordinary pointwise algebra with functions. I claim
that probability theory becomes easier if one works systematically with expectations
of indicator functions, EIA, rather than with the corresponding probabilities of
events.

Let me start with the assertions about algebra and Boolean algebra. The
operations of union and intersection correspond to pointwise maxima (denoted by
max or the symbol ∨) and pointwise minima (denoted by min or the symbol ∧), or
pointwise products:

I∪i Ai (x) =
∨

i

IAi (x) and I∩i Ai (x) =
∧

i

IAi (x) =
∏

i

IAi (x).

Complements correspond to subtraction from one: IAc(x) = 1 − IA(x). Derived
operations, such as the set theoretic difference A\B := A ∩ Bc and the symmetric
difference, A�B := (A\B) ∪ (B\A), also have simple algebraic counterparts:

IA\B(x) = (IA(x) − IB(x))+ := max
(
0, IA(x) − IB(x)

)
,

IA�B(x) = |IA(x) − IB(x)| .
To check these identities, just note that the functions take only the values 0 and 1,
then determine which combinations of indicator values give a 1. For example,
|IA(x) − IB(x)| takes the value 1 when exactly one of IA(x) and IB(x) equals 1.



8 Chapter 1: Motivation

The algebra looks a little cleaner if we omit the argument x . For example, the
horrendous set theoretic relationship(∩n

i=1 Ai
)
�

(∩n
i=1 Bi

) ⊆ ∪n
i=1 (Ai�Bi )

corresponds to the pointwise inequality∣∣∏
i IAi − ∏

i IBi

∣∣ ≤ max
i

∣∣IAi − IBi

∣∣ ,
whose verification is easy: when the right-hand side takes the value 1 the inequality
is trivial, because the left-hand side can take only the values 0 or 1; and when
right-hand side takes the value 0, we have IAi = IBi for all i , which makes the
left-hand side zero.

<1> Example. One could establish an identity such as

(A�B)�(C�D) = A� (B�(C�D))

by expanding both sides into a union of many terms. It is easier to note the pattern
for indicator functions. The set A�B is the region where IA + IB takes an odd value
(that is, the value 1); and (A�B)�C is the region where (IA + IB)+ IC takes an odd
value. And so on. In fact both sides of the set theoretic identity equal the region
where IA + IB + IC + ID takes an odd value. Associativity of set theoretic differences
is a consequence of associativity of pointwise addition.�

<2> Example. The lim sup of a sequence of sets {An : n ∈ N} is defined as

lim sup
n

An :=
∞⋂

n=1

⋃
i≥n

Ai .

That is, the lim sup consists of those x for which, to each n there exists an i ≥ n
such that x ∈ Ai . Equivalently, it consists of those x for which x ∈ Ai for infinitely
many i . In other words,

Ilim supn An = lim sup
n

IAn .

Do you really need to learn the new concept of the lim sup of a sequence
of sets? Theorems that work for lim sups of sequences of functions automatically
carry over to theorems about sets. There is no need to prove everything twice. The
correspondence between sets and their indicators saves us from unnecessary work.�

After some repetition, it becomes tiresome to have to keep writing the I for
the indicator function. It would be much easier to write something like Ã in place
of IA. The indicator of the lim sup of a sequence of sets would then be written
lim supn Ãn , with only the tilde to remind us that we are referring to functions. But
why do we need reminding? As the example showed, the concept for the lim sup
of sets is really just a special case of the concept for sequences of functions. Why
preserve a distinction that hardly matters?

There is a well established tradition in Mathematics for choosing notation that
eliminates inessential distinctions. For example, we use the same symbol 3 for the
natural number and the real number, writing 3 + 6 = 9 as an assertion both about
addition of natural numbers and about addition of real numbers.
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It does not matter if we cannot tell immediately which
6natural

3real 6real

3natural

9real

+real

9natural

+natural

interpretation is intended, because we know there is a one-to-one
correspondence between natural numbers and a subset of the real
numbers, which preserves all the properties of interest. Formally,
there is a map ψ : N → R for which

ψ(x +natural y) = ψ(x) +real ψ(y) for all x, y in N,

with analogous equalities for other operations. (Notice that I even
took care to distinguish between addition as a function from N × N

to N and as a function from R × R to R.) The map ψ is an
isomorphism between N and a subset of R.

Remark. Of course there are some situations where we need to distinguish
between a natural number and its real counterpart. For example, it would be highly
confusing to use indistinguishable symbols when first developing the properties of the
real number system from the properties of the natural numbers. Also, some computer
languages get very upset when a function that expects a floating point argument is
fed an integer variable; some languages even insist on an explicit conversion between
types.

We are faced with a similar overabundance of notation in the correspondence
between sets and their indicator functions. Formally, and traditionally, we have a
map A �→ IA from sets into a subset of the nonnegative real functions. The map
preserves the important operations. It is firmly in the Mathematical tradition that
we should follow de Finetti’s suggestion and use the same symbol for a set and its
indicator function.

Remark. A very similar convention has been advocated by the renowned
computer scientist, Donald Knuth, in an expository article (Knuth 1992). He attributed
the idea to Kenneth Iversen, the inventor of the programming language APL.

In de Finetti’s notation the assertion from Example <2> becomes

lim sup An = lim sup An,

a fact that is quite easy to remember. The theorem about lim sups of sequences
of sets has become incorporated into the notation; we have one less theorem to
remember.

The second piece of de Finetti notation is suggested by the same logic that
encourages us to replace +natural and +real by the single addition symbol: use the
same symbol when extending the domain of definition of a function. For example,
the symbol “sin” denotes both the function defined on the real line and its extension
to the complex domain. More generally, if we have a function g with domain G0,
which can be identified with a subset G̃0 of some G̃ via a correspondence x ↔ x̃ ,
and if g̃ is a function on G̃ for which g̃(x̃) = g(x) for x in G0, then why not write g
instead of g̃ for the function with the larger domain?

With probability theory we often use P to denote a probability measure, as a
map from a class A (a sigma-field) of subsets of some 
 into the subinterval [0, 1]
of the real line. The correspondence A ↔ Ã := IA, between a set A and its indicator
function Ã, establishes a correspondence between A and a subset of the collection of
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random variables on 
. The expectation maps random variables into real numbers,
in such a way that E( Ã) = P(A). This line of thinking leads us to de Finetti’s
second suggestion: use the same symbol for expectation and probability measure,
writing PX instead of EX , and so on.

The de Finetti notation has an immediate advantage when we deal with several
probability measures, P, Q, . . . simultaneously. Instead of having to invent new
symbols EP, EQ, . . . , we reuse P for the expectation corresponding to P, and so on.

Remark. You might have the concern that you will not be able to tell whether
PA refers to the probability of an event or the expected value of the corresponding
indicator function. The ambiguity should not matter. Both interpretations give the
same number; you will never be faced with a choice between two different values
when choosing an interpretation. If this ambivalence worries you, I would suggest
going systematically with the expectation/indicator function interpretation. It will
never lead you astray.

<3> Example. For a finite collection of events A1, . . . , An , the so-called method of
inclusion and exclusion asserts that the probability of the union ∪i≤n Ai equals∑

i

PAi −
∑
i �= j

P(Ai ∩Aj )+
∑
i, j,k

{i, j, k distinct}P(Ai ∩Aj ∩Ak)−. . .±P(A1∩A2∩. . .∩An).

The equality comes by taking expectations on both sides of an identity for (indicator)
functions,

∪i≤n Ai =
∑

i

Ai −
∑
i �= j

Ai Aj +
∑
i, j,k

{i, j, k distinct}Ai Aj Ak − . . . ± A1 A2 . . . An.

The right-hand side of this identity is just the expanded version of 1−∏
i≤n (1 − Ai ).

The identity is equivalent to

1 − ∪i≤n Ai =
∏
i≤n

(1 − Ai ) ,

which presents two ways of expressing the indicator function of ∩i≤n Ac
i . See

Problem [1] for a generalization.�
<4> Example. Consider Tchebychev’s inequality, P{|X − µ| ≥ ε} ≤ var(X)/ε2, for

each ε > 0, and each random variable X with expected value µ := PX and finite
variance, var(X) := P (X − µ)2. On the left-hand side of the inequality we have
the probability of an event. Or is it the expectation of an indicator function?
Either interpretation is correct, but the second is more helpful. The inequality is
a consequence of the increasing property for expectations invoked for a pair of
functions, {|X − µ| ≥ ε} ≤ (X − µ)2/ε2. The indicator function on the left-hand
side takes only the values 0 and 1. The quadratic function on the right-hand side is
nonnegative, and is ≥ 1 whenever the left-hand side equals 1.�

***
For the remainder of the book, I will be using the same symbol for a set and

its indicator function, and writing P instead of E for expectation.

Remark. For me, the most compelling reason to adopt the de Finetti notation,
and work with P as a linear functional defined for random variables, was not that
I would save on symbols, nor any of the other good reasons listed at the end of
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Section 3. Instead, I favor the notation because, once the initial shock of seeing old
symbols used in new ways wore off, it made probability theory easier. I can truly
claim to have gained better insight into classical techniques through the mere fact of
translating them into the new notation. I even find it easier to invent new arguments
when working with a notation that encourages thinking in terms of linearity, and
which does not overemphasize the special role for expectations of functions that take
only the values 0 and 1 by according them a different symbol.

The hope that I might convince probability users of some of the advantages
of de Finetti notation was, in fact, one of my motivations for originally deciding to
write yet another book about an old subject.

*5. Fair prices

For the understanding of this book the interpretation of probability as a model for
uncertainty is not essential. You could study it purely as a piece of mathematics,
divorced from any interpretation but then you would forgo much of the intuition
that accompanies the various interpretations.

The most widely accepted view interprets probabilities and expectations as
long run averages, anticipating the formal laws of large numbers that make precise
a sense in which averages should settle down to expectations over a long sequence
of independent trials. As an aid to intuition I also like another interpretation, which
does not depend on a preliminary concept of independence, and which concentrates
attention on the linearity properties of expectations.

Consider a situation—a bet if you will–where you stand to receive an uncertain
return X . You could think of X as a random variable, a real-valued function on a
set 
. For the moment forget about any probability measure on 
. Suppose you
consider p(X) to be the fair price to pay now in order to receive X at some later
time. (By fair I mean that you should be prepared to take either side of the bet. In
particular, you should be prepared to accept a payment p(X) from me now in return
for giving me an amount X later.) What properties should p(·) have?

Remark. As noted in Section 3, the value p(X) corresponds to an expected
value of the random variable X . If you already know about the possibility of infinite
expectations, you will realize that I would have to impose some restrictions on the
class of random variables for which fair prices are defined, if I were seriously trying
to construct a rigorous system of axioms. It would suffice to restrict the argument to
bounded random variables.

Your net return will be the random quantity X ′(ω) := X (ω) − p(X). Call
the random variable X ′ a fair return, the net return from a fair trade. Unless you
start worrying about utilities—in which case you might consult Savage (1954) or
Ferguson (1967, Section 1.4)—you should find the following properties reasonable.

(i) fair + fair = fair. That is, if you consider p(X) fair for X and p(Y ) fair
for Y then you should be prepared to make both bets, paying p(X) + p(Y ) to
receive X + Y .

(ii) constant × fair = fair. That is, you shouldn’t object if I suggest you pay
2p(X) to receive 2X (actually, that particular example is a special case of (i))
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or 3.76p(X) to receive 3.76X , or −p(X) to receive −X . The last example
corresponds to willingness to take either side of a fair bet. In general, to
receive cX you should pay cp(X), for constant c.

Properties (i) and (ii) imply that the collection of all fair returns is a vector space.
There is a third reasonable property that goes by several names: coherency or

nonexistence of a Dutch book, the no-arbitrage requirement, or the no-free-lunch
principle:

(iii) There is no fair return X ′ for which X ′(ω) ≥ 0 for all ω, with strict inequality
for at least one ω.

(Students of decision theory might be reminded of the the concept of admissibility.)
If you were to declare such an X ′ to be fair I would be delighted to offer you the
opportunity to receive a net return of −10100 X ′. I couldn’t lose.

<5> Lemma. Properties (i), (ii), and (iii) imply that p(·) is an increasing linear
functional on random variables. The fair returns are those random variables for
which p(X) = 0.

Proof. For constants α and β, and random variables X and Y with fair prices p(X)

and p(Y ), consider the combined effect of the following fair bets:

you pay me αp(X) to receive αX

you pay me βp(Y ) to receive βY

I pay you p(αX + βY ) to receive (αX + βY ).

Your net return is a constant,

c = p(αX + βY ) − αp(X) − βp(Y ).

If c > 0 you violate (iii); if c < 0 take the other side of the bet to violate (iii). That
proves linearity.

To prove that p(·) is increasing, suppose X (ω) ≥ Y (ω) for all ω. If you claim
that p(X) < p(Y ) then I would be happy for you to accept the bet that delivers

(Y − p(Y )) − (X − p(X)) = −(X − Y ) − (p(Y ) − p(X)) ,

which is always < 0.
If both X and X − p(X) are considered fair, then the constant return p(X) =

X − (X − p(X)) is fair, which would contradict (iii) unless p(X) = 0.�
As a special case, consider the bet that returns 1 if an event F occurs, and 0

otherwise. If you identify the event F with the random variable taking the value 1
on F and 0 on Fc (that is, the indicator of the event F), then it follows directly
from Lemma <5> that p(·) is additive: p(F1 ∪ F2) = p(F1) + p(F2) for disjoint
events F1 and F2. That is, p defines a finitely additive set-function on events. The
set function p(·) has most of the properties required of a probability measure. As
an exercise you might show that p(∅) = 0 and p(
) = 1.

Contingent bets

Things become much more interesting if you are prepared to make a bet to receive an
amount X but only when some event F occurs. That is, the bet is made contingent
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on the occurrence of F . Typically, knowledge of the occurrence of F should change
the fair price, which we could denote by p(X | F). Expressed more compactly,
the bet that returns (X − p(X | F)) F is fair. The indicator function F ensures that
money changes hands only when F occurs.

<6> Lemma. If 
 is partitioned into disjoint events F1, . . . , Fk , and X is a random
variable, then p(X) = ∑k

i=1 p(Fi )p(X | Fi ).

Proof. For a single Fi , argue by linearity that

0 = p (X Fi − p(X | Fi )Fi ) = p(X Fi ) − p(X | Fi )p(Fi ).

Sum over i , using linearity again, together with the fact that X = ∑
i X Fi , to deduce

that p(X) = ∑
i p(X Fi ) = ∑

i p(Fi )p(X | Fi ), as asserted.�
Why should we restrict the Lemma to finite partitions? If we allowed countable

partitions we would get the countable additivity property—the key requirement in
the theory of measures. I would be suspicious of such an extension of the simple
argument for finite partitions. It makes a tacit assumption that a combination of
countably many fair bets is again fair. If we accept that assumption, then why not
accept that arbitrary combinations of fair events are fair? For uncountably infinite
collections we would run into awkward contradictions. For example, suppose ω is
generated from a uniform distribution on [0, 1]. Let Xt be the random variable that
returns 1 if ω = t and 0 otherwise. By symmetry one might expect p(Xt ) = c for
some constant c that doesn’t depend on t . But there can be no c for which

1 = p(1) = p
(∑

0≤t≤1 Xt
) ?= ∑

0≤t≤1 p(Xt ) =
{

0 if c = 0
±∞ if c �= 0

Perhaps our intuition about the infinite rests on shaky analogies with the finite.

Remark. I do not insist that probabilities must be interpreted as fair prices, just
as I do not accept that all probabilities must be interpreted as assertions about long
run frequencies. It is convenient that both interpretations lead to almost the same
mathematical formalism. You are free to join either camp, or both, and still play by
the same probability rules.

6. Problems

[1] Let A1, . . . , AN be events in a probability space (
, F, P). For each subset J
of {1, 2, . . . , N } write AJ for ∩i∈J Ai . Define Sk := ∑

|J |=k PAJ , where |J | de-
notes the number of indices in J . For 0 ≤ m ≤ N show that the probability
P{exactly m of the Ai ’s occur} equals

(m
m

)
Sm − (m+1

m

)
Sm+1 + . . . ± (N

m

)
SN . Hint: For

a dummy variable z, show that
∏N

i=1(Ac
i + z Ai ) = ∑n

k=0
∑

|J |=k(z − 1)k AJ . Expand
the left-hand side, take expectations, then interpret the coefficient of zm .

[2] Rederive the assertion of Lemma <6> by consideration of the net return from the
following system of bets: (i) for each i , pay ci p(Fi ) in order to receive ci if Fi

occurs, where ci := p(X | Fi ); (ii) pay −p(X) in order to receive −X ; (iii) for
each i , make a bet contingent on Fi , paying ci (if Fi occurs) to receive X .
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[3] For an increasing sequence of events {An : n ∈ N} with union A, show PAn ↑ PA.

7. Notes

See Dubins & Savage (1964) for an illustration of what is possible in a theory of
probability without countable additivity.

The ideas leading up to Lebesgue’s creation of his integral are described in
fascinating detail in the excellent book of Hawkins (1979), which has been the
starting point for most of my forays into the history of measure theory. Lebesgue
first developed his new definition of the integral for his doctoral dissertation
(Lebesgue 1902), then presented parts of his theory in the 1902–1903 Peccot course
of lectures (Lebesgue 1904). The 1928 revision of the 1904 volume greatly expanded
the coverage, including a treatment of the more general (Lebesgue-)Stieltjes integral.
See also Lebesgue (1926), for a clear description of some of the ideas involved in
the development of measure theory, and the Note Historique of Bourbaki (1969), for
a discussion of later developments.

Of course it is a vast oversimplification to imagine that probability theory
abruptly became a specialized branch of measure theory in 1933. As Kolmogorov
himself made clear, the crucial idea was the measure theory of Lebesgue. Kol-
mogorov’s little book was significant not just for “putting in their natural place,
among the general notions of modern mathematics, the basic concepts of probability
theory”, but also for adding new ideas, such as probability distributions in infinite
dimensional spaces (reinventing results of Daniell 1919) and a general theory of
conditional probabilities and conditional expectations.

Measure theoretic ideas were used in probability theory well before 1933.
For example, in the Note at the end of Lévy (1925) there was a clear statement
of the countable additivity requirement for probabilities, but Lévy did not adopt
the complete measure theoretic formalism; and Khinchin & Kolmogorov (1925)
explicitly constructed their random variables as functions on [0, 1], in order to avail
themselves of the properties of Lebesgue measure.

It is also not true that acceptance of the measure theoretic foundation was total
and immediate. For example, eight years after Kolmogorov’s book appeared, von
Mises (1941, page 198) asserted (emphasis in the original):

In recapitulating this paragraph I may say: First, the axioms of Kolmogorov
are concerned with the distribution function within one kollektiv and are
supplementary to my theory, not a substitute for it. Second, using the notion of
measure zero in an absolute way without reference to the arbitrarily assumed
measure system, leads to essential inconsistencies.

See also the argument for the measure theoretic framework in the accompanying
paper by Doob (1941), and the comments by both authors that follow (von Mises &
Doob 1941).

For more about Kolmogorov’s pivotal role in the history of modern probability,
see: Shiryaev (2000), and the other articles in the same collection; the memorial
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articles in the Annals of Probability, volume 17 (1989); and von Plato (1994), which
also contains discussions of the work of von Mises and de Finetti.
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Chapter 2

A modicum of measure theory
SECTION 1 defines measures and sigma-fields.
SECTION 2 defines measurable functions.
SECTION 3 defines the integral with respect to a measure as a linear functional on a cone

of measurable functions. The definition sidesteps the details of the construction of
integrals from measures.

SECTION *4 constructs integrals of nonnegative measurable functions with respect to a
countably additive measure.

SECTION 5 establishes the Dominated Convergence theorem, the Swiss Army knife of
measure theoretic probability.

SECTION 6 collects together a number of simple facts related to sets of measure zero.
SECTION *7 presents a few facts about spaces of functions with integrable pth powers,

with emphasis on the case p=2, which defines a Hilbert space.
SECTION 8 defines uniform integrability, a condition slightly weaker than domination.

Convergence in L1 is characterized as convergence in probability plus uniform
integrability.

SECTION 9 defines the image measure, which includes the concept of the distribution of a
random variable as a special case.

SECTION 10 explains how generating class arguments, for classes of sets, make measure
theory easy.

SECTION *11 extends generating class arguments to classes of functions.

1. Measures and sigma-fields

As promised in Chapter 1, we begin with measures as set functions, then work
quickly towards the interpretation of integrals as linear functionals. Once we are
past the purely set-theoretic preliminaries, I will start using the de Finetti notation
(Section 1.4) in earnest, writing the same symbol for a set and its indicator function.

Our starting point is a measure space: a triple (X,A, µ), with X a set, A a class
of subsets of X, and µ a function that attaches a nonnegative number (possibly +∞)
to each set in A. The class A and the set function µ are required to have properties
that facilitate calculations involving limits along sequences.
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<1> Definition. Call a class A a sigma-field of subsets of X if:

(i) the empty set ∅ and the whole space X both belong to A;

(ii) if A belongs to A then so does its complement Ac;

(iii) if A1, A2, . . . is a countable collection of sets in A then both the union ∪i Ai

and the intersection ∩i Ai are also in A.

Some of the requirements are redundant as stated. For example, once we
have ∅ ∈ A then (ii) implies X ∈ A. When we come to establish properties about
sigma-fields it will be convenient to have the list of defining properties pared down
to a minimum, to reduce the amount of mechanical checking. The theorems will
be as sparing as possible in the amount the work they require for establishing the
sigma-field properties, but for now redundancy does not hurt.

The collection A need not contain every subset of X, a fact forced upon us in
general if we want µ to have the properties of a countably additive measure.

<2> Definition. A function µ defined on the sigma-field A is called a (countably
additive, nonnegative) measure if:

(i) 0 ≤ µA ≤ ∞ for each A in A;

(ii) µ∅ = 0;

(iii) if A1, A2, . . . is a countable collection of pairwise disjoint sets in A then
µ (∪i Ai ) = ∑

i µAi .

A measure µ for which µX = 1 is called a probability measure, and the
corresponding (X,A, µ) is called a probability space. For this special case it is
traditional to use a symbol like P for the measure, a symbol like 	 for the set,
and a symbol like F for the sigma-field. A triple (	, F, P) will always denote a
probability space.

Usually the qualifications “countably additive, nonnegative” are omitted, on the
grounds that these properties are the most commonly assumed—the most common
cases deserve the shortest names. Only when there is some doubt about whether
the measures are assumed to have all the properties of Definition <2> should the
qualifiers be attached. For example, one speaks of “finitely additive measures”
when an analog of property (iii) is assumed only for finite disjoint collections, or
“signed measures” when the value of µA is not necessarily nonnegative. When
finitely additive or signed measures are under discussion it makes sense to mention
explicitly when a particular measure is nonnegative or countably additive, but, in
general, you should go with the shorter name.

Where do measures come from? The most basic constructions start from set
functions µ defined on small collections of subsets E, such as the collection of all
subintervals of the real line. One checks that µ has properties consistent with the
requirements of Definition <2>. One seeks to extend the domain of definition while
preserving the countable additivity properties of the set function. As you saw in
Chapter 1, Theorems guaranteeing existence of such extensions were the culmination
of a long sequence of refinements in the concept of integration (Hawkins 1979).
They represent one of the great achievements of modern mathematics, even though
those theorems now occupy only a handful of pages in most measure theory texts.
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Finite additivity has several appealing interpretations (such as the fair-prices
of Section 1.5) that have given it ready acceptance as an axiom for a model of
real-world uncertainty. Countable additivity is sometimes regarded with suspicion,
or justified as a matter of mathematical convenience. (However, see Problem [6] for
an equivalent form of countable additivity, which has some claim to intuitive appeal.)
It is difficult to develop a simple probability theory without countable additivity,
which gives one the licence (for only a small fee) to integrate series term-by-term,
differentiate under integrals, and interchange other limiting operations.

The classical constructions are significant for my exposition mostly because they
ensure existence of the measures needed to express the basic results of probability
theory. I will relegate the details to the Problems and to Appendix A. If you crave
a more systematic treatment you might consult one of the many excellent texts on
measure theory, such as Royden (1968).

The constructions do not—indeed cannot, in general—lead to countably
additive measures on the class of all subsets of a given X. Typically, they extend
a set function defined on a class of sets E to a measure defined on the sigma-field
σ(E) generated by E, or to only slightly larger sigma-fields. By definition,

σ(E) := smallest sigma-field on X containing all sets from E

= {A ⊆ X : A ∈ F for every sigma-field F with E ⊆ F}.
The representation given by the second line ensures existence of a smallest sigma-
field containing E. The method of definition is analogous to many definitions of
“smallest . . . containing a fixed class” in mathematics—think of generated subgroups
or linear subspaces spanned by a collection of vectors, for example. For the
definition to work one needs to check that sigma-fields have two properties:

(i) If {Fi : i ∈ I} is a nonempty collection of sigma-fields on X then ∩i∈IFi , the
collection of all the subsets of X that belong to every Fi , is also a sigma-field.

(ii) For each E there exists at least one sigma-field F containing all the sets in E.

You should check property (i) as an exercise. Property (ii) is trivial, because the
collection of all subsets of X is a sigma-field.

Remark. Proofs of existence of nonmeasurable sets typically depend on
some deep set-theoretic principle, such as the Axiom of Choice. Mathematicians
who can live with different rules for set theory can have bigger sigma-fields. See
Dudley (1989, Section 3.4) or Oxtoby (1971, Section 5) for details.

<3> Exercise. Suppose X consists of five points a, b, c, d, and e. Suppose E consists
of two sets, E1 = {a, b, c} and E2 = {c, d, e}. Find the sigma-field generated by E.
Solution: For this simple example we can proceed by mechanical application of
the properties that a sigma-field σ(E) must possess. In addition to the obvious ∅
and X, it must contain each of the sets

F1 := {a, b} = E1 ∩ Ec
2 and F2 := {c} = E1 ∩ E2,

F3 := {d, e} = Ec
1 ∩ E2 and F4 := {a, b, d, e} = F1 ∪ F3.
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Further experimentation creates no new members of σ(E); the sigma-field consists
of the sets

∅, F1, F2, F3, F1 ∪ F3, F1 ∪ F2 = E1, F2 ∪ F3 = E2, X.

The sets F1, F2, F3 are the atoms of the sigma-field; every member of σ(E) is a
union of some collection (possibly empty) of Fi . The only measurable subsets of Fi

are the empty set and Fi itself. There are no measurable protons or neutrons hiding
inside these atoms.�

An unsystematic construction might work for finite sets, but it cannot generate
all members of a sigma-field in general. Indeed, we cannot even hope to list all
the members of an infinite sigma-field. Instead we must find a less explicit way to
characterize its sets.

<4> Example. By definition, the Borel sigma-field on the real line, denoted by B(R),
is the sigma-field generated by the open subsets. We could also denote it by σ(G)

where G stands for the class of all open subsets of R. There are several other
generating classes for B(R). For example, as you will soon see, the class E of all
intervals (−∞, t], with t ∈ R, is a generating class.

It might appear a hopeless task to prove that σ(E) = B(R) if we cannot
explicitly list the members of both sigma-fields, but actually the proof is quite
routine. You should try to understand the style of argument because it is often used
in probability theory.

The equality of sigma-fields is established by two inclusions, σ(E) ⊆ σ(G) and
σ(G) ⊆ σ(E), both of which follow from more easily established results. First we
must prove that E ⊆ σ(G), showing that σ(G) is one of the sigma-fields F that enter
into the intersection defining σ(E), and hence σ(E) ⊆ σ(G). The other inclusion
follows similarly if we show that G ⊆ σ(E).

Each interval (−∞, t] in E has a representation
⋂∞

n=1(−∞, t +n−1), a countable
intersection of open sets. The sigma-field σ(G) contains all open sets, and it is
stable under countable intersections. It therefore contains each (−∞, t]. That is,
E ⊆ σ(G).

The argument for G ⊆ σ(E) is only slightly harder. It depends on the fact
that an open subset of the real line can be written as a countable union of open
intervals. Such an interval has a representation (a, b) = (−∞, b) ∩ (−∞, a]c, and
(−∞, b) = ⋃∞

n=1(−∞, b − n−1]. That is, every open set can be built up from sets
in E using operations that are guaranteed not to take us outside the sigma-field σ(E).

My explanation has been moderately detailed. In a published paper the
reasoning would probably be abbreviated to something like “a generating class
argument shows that . . . ,” with the routine details left to the reader.�

Remark. The generating class argument often reduces to an assertion like: A
is a sigma-field and A ⊇ E, therefore A = σ(A) ⊇ σ(E).

<5> Example. A class E of subsets of a set X is called a field if it contains the empty
set and is stable under complements, finite unions, and finite intersections. For a
field E, write Eδ for the class of all possible intersections of countable subclasses
of E, and Eσ for the class of all possible unions of countable subclasses of E.
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Of course if E is a sigma-field then E = Eδ = Eσ , but, in general, the inclusions
σ(E) ⊇ Eδ ⊇ E and σ(E) ⊇ Eσ ⊇ E will be proper. For example, if X = R and E

consists of all finite unions of half open intervals (a, b], with possibly a = −∞ or
b = +∞, then the set of rationals does not belong to Eσ and the complement of the
same set does not belong to Eδ.

Let µ be a finite measure on σ(E). Even though σ(E) might be much larger
than either Eσ or Eδ, a generating class argument will show that all sets in σ(E) can
be inner approximated by Eδ, in the sense that,

µA = sup{µF : A ⊇ F ∈ Eδ} for each A in σ(E),

and outer approximated by Eσ , in the sense that,

µA = inf{µG : A ⊆ G ∈ Eσ } for each A in σ(E).

Remark. Incidentally, I chose the letters G and F to remind myself of open
and closed sets, which have similar approximation properties for Borel measures on
metric spaces—see Problem [12].

It helps to work on both approximation properties at the same time. Denote by
B0 the class of all sets in σ(E) that can be both innner and outer approximated. A
set B belongs to B0 if and only if, to each ε > 0 there exist F ∈ Eδ and G ∈ Eσ such
that F ⊆ B ⊆ G and µ(G\F) < ε. I’ll call the sets F and G an ε-sandwich for B.

Trivially B0 ⊇ E, because each member of E belongs to both Eσ and Eδ. The
approximation result will follow if we show that B0 is a sigma-field, for then we
will have B0 = σ(B0) ⊇ σ(E).

Symmetry of the definition ensures that B0 is stable under complements: if
F ⊆ B ⊆ G is an ε-sandwich for B, then Gc ⊆ Bc ⊆ Fc is an ε-sandwich for Bc.
To show that B0 is stable under countable unions, consider a countable collection
{Bn : n ∈ N} of sets from B0. We need to slice the bread thinner as n gets larger:
choose ε/2n-sandwiches Fn ⊆ Bn ⊆ Gn for each n. The union ∪n Bn is sandwiched
between the sets G := ∪nGn and H = ∪n Fn; and the sets are close in µ measure
because

µ
( ∪n Gn\ ∪n Fn

) ≤
∑

n

µ(Gn\Fn) <
∑

n

ε/2n = ε.

Remark. Can you prove this inequality? Do you see why ∪n Gn\ ∪n Fn ⊆
∪n (Gn\Fn) and why countable additivity implies that the measure of a countable union
of (not necessarily disjoint) sets is smaller than the sum of their measures? If not,
just wait until Section 3, after which you can argue that ∪n Gn\∪n Fn ≤ ∑

n(Gn\Fn),
as an inequality between indicator functions, and µ

(∑
n(Gn\Fn)

) = ∑
n µ(Gn\Fn)

by Monotone Convergence.

We have an ε-sandwich, but the bread might not be of the right type. It is
certainly true that G ∈ Eσ (a countable union of countable unions is a countable
union), but the set H need not belong to Eδ. However, the sets HN := ∪n≤N Fn do
belong to Eδ, and countable additivity implies that µHN ↑ µH .

Remark. Do you see why? If not, wait for Monotone Convergence again.

If we choose a large enough N we have a 2ε-sandwich HN ⊆ ∪n Bn ⊆ G.�
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The measure m on B(R) for which m(a, b] = b−a is called Lebesgue measure.
Another sort of generating class argument (see Section 10) can be used to show
that the values m(B) for B in B(R) are uniquely determined by the values given to
intervals; there can exist at most one measure on B(R) with the stated property. It
is harder to show that at least one such measure exists. Despite any intuitions you
might have about length, the construction of Lebesgue measure is not trivial—see
Appendix A. Indeed, Henri Lebesgue became famous for proving existence of the
measure and showing how much could be done with the new integration theory.

The name Lebesgue measure is also given to an extension of m to a measure
on a sigma-field, sometimes called the Lebesgue sigma-field, which is slightly larger
than B(R). I will have more to say about the extension in Section 6.

Borel sigma-fields are defined in similar fashion for any topological space X.
That is, B(X) denotes the sigma-field generated by the open subsets of X.

Sets in a sigma-field A are said to be measurable or A-measurable. In
probability theory they are also called events. Good functions will also be given the
title measurable. Try not to get confused when you really need to know whether an
object is a set or a function.

2. Measurable functions

Let X be a set equipped with a sigma-field A, and Y be a set equipped with a
sigma-field B, and T be a function (also called a map) from X to Y. We say that T
is A\B-measurable if the inverse image {x ∈ X : T x ∈ B} belongs to A for each
B in B. Sometimes the inverse image is denoted by {T ∈ B} or T −1 B. Don’t be
fooled by the T −1 notation into treating T −1 as a function from Y into X: it’s not,
unless T is one-to-one (and onto, if you want to have domain Y). Sometimes an
A\B-measurable map is referred to in abbreviated form as just A-measurable, or
just B-measurable, or just measurable, if there is no ambiguity about the unspecified
sigma-fields.

T-1B

T

B

(X,A)

(Y,B)

For example, if Y = R and B equals the Borel sigma-field B(R), it is common
to drop the B(R) specification and refer to the map as being A-measurable, or as
being Borel measurable if A is understood and there is any doubt about which
sigma-field to use for the real line. In this book, you may assume that any sigma-field
on R is its Borel sigma-field, unless explicitly specified otherwise. It can get confusing
if you misinterpret where the unspecified sigma-fields live. My advice would be
that you imagine a picture showing the two spaces involved, with any missing
sigma-field labels filled in.
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Sometimes the functions come first, and the sigma-fields are chosen specifically
to make those functions measurable.

<6> Definition. Let H be a class of functions on a set X. Suppose the typical h in H

maps X into a space Yh equipped with a sigma-field Bh . Then the sigma-field σ(H)

generated by H is defined as σ {h−1(B) : B ∈ Bh, h ∈ H}. It is the smallest
sigma-field A0 on X for which each h in H is A0\Bh-measurable.

<7> Example. If B = σ(E) for some class E of subsets of Y then a map T is
A\σ(E)-measurable if and only if T −1 E ∈ A for every E in E. You should prove
this assertion by checking that {B ∈ B : T −1 B ∈ A} is a sigma-field, and then
arguing from the definition of a generating class.

In particular, to establish A\B(R)-measurability of a map into the real line
it is enough to check the inverse images of intervals of the form (t, ∞), with t
ranging over R. (In fact, we could restrict t to a countable dense subset of R,
such as the set of rationals: How would you build an interval (t, ∞) from intervals
(ti , ∞) with rational ti ?) That is, a real-valued function f is Borel-measurable if
{x ∈ X : f (x) > t} ∈ A for each real t . There are many similar assertions obtained
by using other generating classes for B(R). Some authors use particular generating
classes for the definition of measurability, and then derive facts about inverse images
of Borel sets as theorems.�

It will be convenient to consider not just real-valued functions on a set X,
but also functions from X into the extended real line R := [−∞, ∞]. The Borel
sigma-field B(R) is generated by the class of open sets, or, more explicitly, by all
sets in B(R) together with the two singletons {−∞} and {∞}. It is an easy exercise
to show that B(R) is generated by the class of all sets of the form (t, ∞], for t in R,
and by the class of all sets of the form [−∞, t), for t in R. We could even restrict t
to any countable dense subset of R.

<8> Example. Let a set X be equipped with a sigma-field A. Let { fn : n ∈ N} be a
sequence of A\B(R)-measurable functions from X into R. Define functions f and g
by taking pointwise suprema and infima: f (x) := supn fn(x) and g(x) := infn fn(x).
Notice that f might take the value +∞, and g might take the value −∞, at some
points of X. We may consider both as maps from X into R. (In fact, the whole
argument is unchanged if the fn functions themselves are also allowed to take
infinite values.)

The function f is A\B(R)-measurable because

{x : f (x) > t} = ∪n{x : fn(x) > t} ∈ A for each real t :

for each fixed x , the supremum of the real numbers fn(x) is strictly greater than t
if and only if fn(x) > t for at least one n. Example <7> shows why we have only
to check inverse images for such intervals.

The same generating class is not as convenient for proving measurability of g.
It is not true that an infimum of a sequence of real numbers is strictly greater than t
if and only if all of the numbers are strictly greater than t : think of the sequence
{n−1 : n = 1, 2, 3, . . .}, whose infimum is zero. Instead you should argue via the
identity {x : g(x) < t} = ∪n{x : fn(x) < t} ∈ A for each real t .�
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From Example <8> and the representations lim sup fn(x) = infn∈N supm≥n fm(x)

and lim inf fn(x) = supn∈N infm≥n fm(x), it follows that the lim sup or lim inf of a
sequence of measurable (real- or extended real-valued) functions is also measurable.
In particular, if the limit exists it is measurable.

Measurability is also preserved by the usual algebraic operations—sums,
differences, products, and so on—provided we take care to avoid illegal pointwise
calculations such as ∞ − ∞ or 0/0. There are several ways to establish these
stability properties. One of the more direct methods depends on the fact that R has
a countable dense subset, as illustrated by the following argument for sums.

<9> Example. Let f and g be B(R)-measurable functions, with pointwise sum
h(x) = f (x) + g(x). (I exclude infinite values because I don’t want to get caught
up with inconclusive discussions of how we might proceed at points x where
f (x) = +∞ and g(x) = −∞, or f (x) = −∞ and g(x) = +∞.) How can we prove
that h is also a B(R)-measurable function?

It is true that

{x : h(x) > t} = ∪s∈R

({x : f (x) = s} ∩ {x : g(x) > t − s}) ,

and it is true that the set {x : f (x) = s} ∩ {x : g(x) > t − s} is measurable for each s
and t , but sigma-fields are not required to have any particular stability properties for
uncountable unions. Instead we should argue that at each x for which f (x)+g(x) > t
there exists a rational number r such that f (x) > r > t − g(x). Conversely if there
is an r lying strictly between f (x) and t − g(x) then f (x) + g(x) > t . Thus

{x : h(x) > t} = ∪r∈Q ({x : f (x) > r} ∩ {x : g(x) > t − r}) ,

where Q denotes the countable set of rational numbers. A countable union of
intersections of pairs of measurable sets is measurable. The sum is a measurable
function.�

As a little exercise you might try to extend the argument from the last Example
to the case where f and g are allowed to take the value +∞ (but not the value −∞).
If you want practice at playing with rationals, try to prove measurability of products
(be careful with inequalities if dividing by negative numbers) or try Problem [4],
which shows why a direct attack on the lim sup requires careful handling of
inequalities in the limit.

The real significance of measurability becomes apparent when one works
through the construction of integrals with respect to measures, as in Section 4. For
the moment it is important only that you understand that the family of all measurable
functions is stable under most of the familiar operations of analysis.

<10> Definition. The class M(X, A), or M(X) or just M for short, consists of all
A\B(R)-measurable functions from X into R. The class M+(X,A), or M+(X) or
just M+ for short, consists of the nonnegative functions in M(X, A).

If you desired exquisite precision you could write M(X, A, R, B(R)), to
eliminate all ambiguity about domain, range, and sigma-fields.

The collection M+ is a cone (stable under sums and multiplication of functions
by positive constants). It is also stable under products, pointwise limits of sequences,
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and suprema or infima of countable collections of functions. It is not a vector space,
because it is not stable under subtraction; but it does have the property that if f and
g belong to M+ and g takes only real values, then the positive part ( f − g)+, defined
by taking the pointwise maximum of f (x) − g(x) with 0, also belongs to M+. You
could adapt the argument from Example <9> to establish the last fact.

It proves convenient to work with M+ rather than with the whole of M, thereby
eliminating many problems with ∞ − ∞. As you will soon learn, integrals have
some convenient properties when restricted to nonnegative functions.

For our purposes, one of the most important facts about M+ will be the
possibility of approximation by simple functions that is by measurable functions
of the form s := ∑

i αi Ai , for finite collections of real numbers αi and events Ai

from A. If the Ai are disjoint, s(x) equals αi when x ∈ Ai , for some i , and is
zero otherwise. If the Ai are not disjoint, the nonzero values taken by s are sums
of various subsets of the {αi }. Don’t forget: the symbol Ai gets interpreted as an
indicator function when we start doing algebra. I will write M+

simple for the cone of
all simple functions in M+.

<11> Lemma. For each f in M+ the sequence { fn} ⊆ M+
simple, defined by

fn := 2−n
4n∑

i=1

{
f ≥ i/2n

}
,

has the property 0 ≤ f1(x) ≤ f2(x) ≤ . . . ≤ fn(x) ↑ f (x) at every x .

Remark. The definition of fn involves algebra, so you must interpret { f ≥ i/2n}
as the indicator function of the set of all points x for which f (x) ≥ i/2n .

Proof. At each x , count the number of nonzero indicator values. If f (x) ≥ 2n , all
4n summands contribute a 1, giving fn(x) = 2n . If k2−n ≤ f (x) < (k + 1)2−n , for
some integer k from {0, 1, 2, . . . , 4n − 1}, then exactly k of the summands contribute
a 1, giving fn(x) = k2−n . (Check that the last assertion makes sense when k
equals 0.) That is, for 0 ≤ f (x) < 2n , the function fn rounds down to an integer
multiple of 2−n , from which the convergence and monotone increasing properties
follow.

f

f1

f0

If you do not find the monotonicity assertion convincing, you could argue,
more formally, that

fn = 1
2n+1

4n∑
i=1

2
{

f ≥ 2i

2n+1

}
≤ 1

2n+1

4×4n∑
i=1

({
f ≥ 2i

2n+1

}
+

{
f ≥ 2i − 1

2n+1

})
= fn+1,

which reflects the effect of doubling the maximum value and halving the step size
when going from the nth to the (n+1)st approximation.�



26 Chapter 2: A modicum of measure theory

As an exercise you might prove that the product of functions in M+ also
belongs to M+, by expressing the product as a pointwise limit of products of simple
functions. Notice how the convention 0 × ∞ = 0 is needed to ensure the correct
limit behavior at points where one of the factors is zero.

3. Integrals

Just as
∫ b

a f (x) dx represents a sort of limiting sum of f (x) values weighted by
small lengths of intervals—the

∫
sign is a long “S”, for sum, and the dx is a sort

of limiting increment—so can the general integral
∫

f (x) µ(dx) be defined as a
limit of weighted sums but with weights provided by the measure µ. The formal
definition involves limiting operations that depend on the assumed measurability of
the function f . You can skip the details of the construction (Section 4) by taking
the following result as an axiomatic property of the integral.

<12> Theorem. For each measure µ on (X,A) there is a uniquely determined functional,
a map µ̃ from M+(X,A) into [0, ∞], having the following properties:

(i) µ̃(IA) = µA for each A in A;

(ii) µ̃(0) = 0, where the first zero stands for the zero function;

(iii) for nonnegative real numbers α, β and functions f , g in M+,

µ̃(α f + βg) = αµ̃( f ) + βµ̃(g);
(iv) if f , g are in M+ and f ≤ g everywhere then µ̃( f ) ≤ µ̃(g);

(v) if f1, f2, . . . is a sequence in M+ with 0 ≤ f1(x) ≤ f2(x) ≤ . . . ↑ f (x) for
each x in X then µ̃( fn) ↑ µ̃( f ).

I will refer to (iii) as linearity, even though M+ is not a vector space.
It will imply a linearity property when µ̃ is extended to a vector subspace of M.
Property (iv) is redundant because it follows from (ii) and nonnegativity. Property (ii)
is also redundant: put A = ∅ in (i); or, interpreting 0 × ∞ as 0, put α = β = 0 and
f = g = 0 in (iii). We need to make sure the bad case µ̃ f = ∞, for all f in M+,
does not slip through if we start stripping away redundant requirements.

Notice that the limit function f in (v) automatically belongs to M+. The
limit assertion itself is called the Monotone Convergence property. It corresponds
directly to countable additivity of the measure. Indeed, if {Ai : i ∈ N} is a countable
collection of disjoint sets from A then the functions fn := A1 + . . . + An increase
pointwise to the indicator function of A = ∪i∈N Ai , so that Monotone Convergence
and linearity imply µA = ∑

i µAi .

Remark. You should ponder the role played by +∞ in Theorem <12>. For
example, what does αµ̃( f ) mean if α = 0 and µ̃( f ) = ∞? The interpretation
depends on the convention that 0 × ∞ = 0.

In general you should be suspicious of any convention involving ±∞. Pay
careful attention to cases where it operates. For example, how would the five
assertions be affected if we adopted a new convention, whereby 0 × ∞ = 6? Would
the Theorem still hold? Where exactly would it fail? I feel uneasy if it is not
clear how a convention is disposing of awkward cases. My advice: be very, very
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careful with any calculations involving infinity. Subtle errors are easy to miss when
concealed within a convention.

There is a companion to Theorem <12> that shows why it is largely a matter
of taste whether one starts from measures or integrals as the more primitive measure
theoretic concept.

<13> Theorem. Let µ̃ be a map from M+ to [0, ∞] that satisfies properties (ii)
through (v) of Theorem <12>. Then the set function defined on the sigma-field A

by (i) is a (countably additive, nonnegative) measure, with µ̃ the functional that it
generates.

Lemma <11> provides the link between the measure µ and the functional µ̃.
For a given f in M+, let { fn} be the sequence defined by the Lemma. Then

µ̃ f = lim
n→∞ µ̃ fn = lim

n→∞ 2−n
4n∑

i=1

µ{ f ≥ i/2n},

the first equality by Monotone Convergence, the second by linearity. The value
of µ̃ f is uniquely determined by µ, as a set function on A. It is even possible to
use the equality, or something very similar, as the basis for a direct construction of
the integral, from which properties (i) through (v) are then derived, as you will see
from Section 4.

In summary: There is a one-to-one correspondence

A

IIAI

A

M
+

µ definedfinedf
    here

µ~ definedµ
    here

between measures on the sigma-field A and increasing linear
functionals on M+(A) with the Monotone Convergence
property. To each measure µ there is a uniquely determined
functional µ̃ for which µ̃(IA) = µ(A) for every A in A.
The functional µ̃ is usually called an integral with respect
to µ, and is variously denoted by

∫
f dµ or

∫
f (x) µ(dx)

or
∫
X

f dµ or
∫

f (x) dµ(x). With the de Finetti notation,
where we identify a set A with its indicator function, the
functional µ̃ is just an extension of µ from a smaller domain
(indicators of sets in A) to a larger domain (all of M+).

Accordingly, we should have no qualms about denoting it by the same symbol. I
will write µ f for the integral. With this notation, assertion (i) of Theorem <12>

becomes: µA = µA for all A in A. You probably can’t tell that the A on the
left-hand side is an indicator function and the µ is an integral, but you don’t need
to be able to tell—that is precisely what (i) asserts.

Remark. In elementary algebra we rely on parentheses, or precedence, to make
our meaning clear. For example, both (ax) + b and ax + b have the same meaning,
because multiplication has higher precedence than addition. With traditional notation,
the

∫
and the dµ act like parentheses, enclosing the integrand and separating it

from following terms. With linear functional notation, we sometimes need explicit
parentheses to make the meaning unambiguous. As a way of eliminating some
parentheses, I often work with the convention that integration has lower precedence
than exponentiation, multiplication, and division, but higher precedence than addition
or subtraction. Thus I intend you to read µ f g + 6 as (µ( f g)) + 6. I would write
µ( f g + 6) if the 6 were part of the integrand.
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Some of the traditional notations also remove ambiguity when functions of
several variables appear in the integrand. For example, in

∫
f (x, y) µ(dx) the y

variable is held fixed while the µ operates on the first argument of the function.
When a similar ambiguity might arise with linear functional notation, I will append
a superscript, as in µx f (x, y), to make clear which variable is involved in the
integration.

<14> Example. Suppose µ is a finite measure (that is, µX < ∞) and f is a function
in M+. Then µ f < ∞ if and only if

∑∞
n=1 µ{ f ≥ n} < ∞.

The assertion is just a pointwise inequality in disguise. By considering
separately values for which k ≤ f (x) < k + 1, for k = 0, 1, 2, . . ., you can verify the
pointwise inequality between functions,∑∞

n=1{ f ≥ n} ≤ f ≤ 1 + ∑∞
n=1{ f ≥ n}.

In fact, the sum on the left-hand side defines � f (x)�, the largest integer ≤ f (x),
and the right-hand side denotes the smallest integer > f (x). From the leftmost
inequality,

µ f ≥ µ
(∑∞

n=1{ f ≥ n}) increasing

= lim
N→∞

µ
(∑N

n=1{ f ≥ n}) Monotone Convergence

= lim
N→∞

∑N
n=1 µ{ f ≥ n} linearity

= ∑∞
n=1 µ{ f ≥ n}.

A similar argument gives a companion upper bound. Thus the pointwise inequality
integrates out to

∑∞
n=1 µ{ f ≥ n} ≤ µ f ≤ µX + ∑∞

n=1 µ{ f ≥ n}, from which the
asserted equivalence follows.�

Extension of the integral to a larger class of functions

Every function f in M can be decomposed into a difference f = f + − f − of two
functions in M+, where f +(x) := max

(
f (x), 0

)
and f −(x) := max

(− f (x), 0
)
. To

extend µ from M+ to a linear functional on M we should define µ f := µ f + − µ f −.
This definition works if at least one of µ f + and µ f − is finite; otherwise we get
the dreaded ∞ − ∞. If both µ f + < ∞ and µ f − < ∞ (or equivalently, f is
measurable and µ| f | < ∞) the function f is said to be integrable or µ-integrable.
The linearity property (iii) of Theorem <12> carries over partially to M if ∞ − ∞
problems are excluded, although it becomes tedious to handle all the awkward cases
involving ±∞. The constants α and β need no longer be nonnegative. Also if both
f and g are integrable and if f ≤ g then µ f ≤ µg, with obvious extensions to
certain cases involving ∞.

<15> Definition. The set of all real-valued, µ-integrable functions in M is denoted by
L1(µ), or L1(X,A, µ).

The set L1(µ) is a vector space (stable under pointwise addition and multipli-
cation by real numbers). The integral µ defines an increasing linear functional on
L1(µ), in the sense that µ f ≥ µg if f ≥ g pointwise. The Monotone Convergence
property implies other powerful limit results for functions in L1(µ), as described in
Section 5. By restricting µ to L1(µ), we eliminate problems with ∞ − ∞.
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For each f in L1(µ), its L1 norm is defined as ‖ f ‖1 := µ| f |. Strictly speaking,
‖ · ‖1 is only a seminorm, because ‖ f ‖1 = 0 need not imply that f is the zero
function—as you will see in Section 6, it implies only that µ{ f �= 0} = 0. It
is common practice to ignore the small distinction and refer to ‖ · ‖1 as a norm
on L1(µ).

<16> Example. Let � be a convex, real-valued function on R. The function � is
measurable (because {� ≤ t} is an interval for each real t), and for each x0 in R

there is a constant α such that �(x) ≥ �(x0) + α(x − x0) for all x (Appendix C).
Let P be a probability measure, and X be an integrable random variable.

Choose x0 := PX . From the inequality �(x) ≥ −|�(x0)| − |α|(|x | + |x0|) we
deduce that P�(X)− ≤ |�(x0)| + |α|(P|X | + |x0|) < ∞. Thus we should have no
∞ − ∞ worries in taking expectations (that is, integrating with respect to P) to
deduce that P�(X) ≥ �(PX) + α(PX − x0) = �(PX), a result known as Jensen’s
inequality. One way to remember the direction of the inequality is to note that
0 ≤ var(X) = PX2 − (PX)2, which corresponds to the case �(x) = x2.�

Integrals with respect to Lebesgue measure

Lebesgue measure m on B(R) corresponds to length: m[a, b] = b − a for each
interval. I will occasionally revert to the traditional ways of writing such integrals,

m f =
∫

f (x) dx =
∫ ∞

−∞
f (x) dx and mx

(
f (x){a ≤ x ≤ b}) =

∫ b

a
f (x)dx .

Don’t worry about confusing the Lebesgue integral with the Riemann integral over
finite intervals. Whenever the Riemann is well defined, so is the Lebesgue, and the
two sorts of integral have the same value. The Lebesgue is a more general concept.
Indeed, facts about the Riemann are often established by an appeal to theorems
about the Lebesgue. You do not have to abandon what you already know about
integration over finite intervals.

The improper Riemann integral,
∫ ∞
−∞ f (x) dx = limn→∞

∫ n
−n f (x) dx , also agrees

with the Lebesgue integral provided m| f | < ∞. If m| f | = ∞, as in the case of
the function f (x) := ∑∞

n=1{n ≤ x < n + 1}(−1)n/n, the improper Riemann integral
might exist as a finite limit, while the Lebesgue integral m f does not exist.

*4. Construction of integrals from measures

To construct the integral µ̃ as a functional on M+(X,A), starting from a measure
µ on the sigma-field A, we use approximation from below by means of simple
functions.

First we must define µ̃ on M+
simple. The representation of a simple function as a

linear combination of indicator functions is not unique, but the additivity properties
of the measure µ will let us use any representation to define the integral. For
example, if s := 3A1 + 7A2 = 3A1 Ac

2 + 10A1 A2 + 7Ac
1 A2, then

3µ(A1) + 7µ(A2) = 3µ(A1 Ac
2) + 10µ(A1 A2) + 7µ(Ac

1 A2).
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More generally, if s := ∑
i αi Ai has another representation s = ∑

j βj Bj , then∑
i αiµAi = ∑

j βjµBj . Proof? Thus we can uniquely define µ̃(s) for a simple
function s := ∑

i αi Ai by µ̃ (s) := ∑
i αiµAi .

Define the increasing functional µ̃ on M+ by

µ̃ ( f ) := sup{µ̃ (s) : f ≥ s ∈ M+
simple}.

That is, the integral of f is a supremum of integrals of nonnegative simple functions
less than f .

From the representation of simple functions as linear combinations of disjoint
sets in A, it is easy to show that µ̃(IA) = µA for every A in A. It is also easy to
show that µ̃(0) = 0, and µ̃(α f ) = αµ̃( f ) for nonnegative real α, and

<17> µ̃( f + g) ≥ µ̃( f ) + µ̃(g).

The last inequality, which is usually referred to as the superadditivity property,
follows from the fact that if f ≥ u and g ≥ v, and both u and v are simple, then
f + g ≥ u + v with u + v simple.

Only the Monotone Convergence property and the companion to <17>,

<18> µ̃( f + g) ≤ µ̃( f ) + µ̃(g),

require real work. Here you will see why measurability is needed.

Proof of inequality <18>. Let s be a simple function ≤ f + g, and let ε be a small
positive number. It is enough to construct simple functions u, v with u ≤ f and
v ≤ g such that u + v ≥ (1 − ε)s. For then µ̃ f + µ̃g ≥ µ̃u + µ̃v ≥ (1 − ε)µ̃s, from
which the subadditivity inequality <18> follows by taking a supremum over simple
functions then letting ε tend to zero.

For simplicity of notation I will assume s to be very simple: s := A. You can

f

A

u

repeat the argument for each Ai in a representation
∑

i αi Ai with disjoint Ai to get
the general result. Suppose ε = 1/m for some positive
integer m. Write �j for j/m. Define simple functions

u := A{ f ≥ 1} + ∑m
j=1 A

{
�j−1 ≤ f < �j

}
�j−1,

v := ∑m
j=1 A

{
�j−1 ≤ f < �j

} (
1 − �j

)
.

The measurability of f ensures A-measurability of all
the sets entering into the definitions of u and v. For the

inequality v ≤ g, notice that f + g ≥ 1 on A, so g > 1 − �j = v when �j−1 ≤ f < �j

on A. Finally, note that the simple functions were chosen so that

u + v = A{ f ≥ 1} + ∑m
j=1 A

{
�j−1 ≤ f < �j

}
(1 − ε) ≥ (1 − ε) A,

as desired.�
Proof of the Monotone Convergence property. Suppose fn ∈ M+f

fnfnf and fn ↑ f . Suppose f ≥ s := ∑
αi Ai , with the Ai disjoint

sets in A and αi > 0. Define approximating simple functions
sn := ∑

i (1 − ε)αi Ai { fn ≥ (1 − ε)αi }. Clearly sn ≤ fn . The
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simple function sn is one of those that enters into the supremum defining µ̃ fn . It
follows that

µ̃ fn ≥ µ̃(sn) = (1 − ε)
∑

i αiµ
(

Ai { fn ≥ (1 − ε)αi }
)
.

On the set Ai the functions fn increase monotonely to f , which is ≥ αi . The sets
Ai { fn ≥ (1 − ε)αi } expand up to the whole of Ai . Countable additivity implies that
the µ measures of those sets increase to µAi . It follows that

lim µ̃ fn ≥ lim sup µ̃sn ≥ (1 − ε)µ̃s.

Take a supremum over simple s ≤ f then let ε tend to zero to complete the proof.�

5. Limit theorems

Theorem <13> identified an integral on M+ as an increasing linear functional with
the Monotone Convergence property :

<19> if 0 ≤ fn ↑ then µ
(

lim
n→∞ fn

)
= lim

n→∞ µ fn.

Two direct consequences of this limit property have important applications through-
out probability theory. The first, Fatou’s Lemma, asserts a weaker limit property
for nonnegative functions when the convergence and monotonicity assumptions are
dropped. The second, Dominated Convergence, drops the monotonicity and nonneg-
ativity but imposes an extra domination condition on the convergent sequence { fn}.
I have slowly realized over the years that many simple probabilistic results can be
established by Dominated Convergence arguments. The Dominated Convergence
Theorem is the Swiss Army Knife of probability theory.

It is important that you understand why some conditions are needed before
we can interchange integration (which is a limiting operation) with an explicit
limit, as in <19>. Variations on the following example form the basis for many
counterexamples.

<20> Example. Let µ be Lebesgue measure on B[0, 1] and let {αn} be a sequence
of positive numbers. The function fn(x) := αn{0 < x < 1/n} converges to zero,
pointwise, but its integral µ( fn) = αn/n need not converge to zero. For example,
αn = n2 gives µ fn → ∞; the integrals diverge. And

αn =
{

6n for n even
3n for n odd

gives µ fn =
{

6 for n even
3 for n odd.

The integrals oscillate.�
<21> Fatou’s Lemma. For every sequence { fn} in M+ (not necessarily convergent),

µ(lim infn→∞ fn) ≤ lim infn→∞ µ( fn).

Proof. Write f for lim inf fn . Remember what a lim inf means. Define gn :=
infm≥n fm . Then gn ≤ fn for every n and the {gn} sequence increases monotonely to
the function f . By Monotone Convergence, µ f = limn→∞ µgn . By the increasing
property, µgn ≤ µ fn for each n, and hence limn→∞ µgn ≤ lim infn→∞ µ fn .�
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For dominated sequences of functions, a splicing together of two Fatou Lemma
assertions gives two lim inf consequences that combine to produce a limit result.
(See Problem [10] for a generalization.)

<22> Dominated Convergence. Let { fn} be a sequence of µ-integrable functions for
which limn fn(x) exists for all x . Suppose there exists a µ-integrable function F ,
which does not depend on n, such that | fn(x)| ≤ F(x) for all x and all n. Then the
limit function is integrable and µ(limn→∞ fn) = limn→∞ µ fn .

Proof. The limit function is also bounded in absolute value by F , and hence it is
integrable.

Apply Fatou’s Lemma to the two sequences {F + fn} and {F − fn} in M+, to
get

µ(lim inf(F + fn)) ≤ lim inf µ(F + fn) = lim inf (µF + µ fn) ,

µ(lim inf(F − fn)) ≤ lim inf µ(F − fn) = lim inf (µF − µ fn) .

Simplify, using the fact that a lim inf is the same as a lim for convergent sequences.

µ(F ± lim fn)) ≤ µF + lim inf (±µ fn) .

Notice that we cannot yet assert that the lim inf on the right-hand side is actually a
limit. The negative sign turns a lim inf into a lim sup.

µF ± µ(lim fn) ≤
{

µF + lim inf µ fn

µF − lim sup µ fn

Cancel out the finite number µF then rearrange, leaving

lim sup µ fn ≤ µ(lim fn) ≤ lim inf µ fn.

The convergence assertion follows.�
Remark. You might well object to some of the steps in the proof on ∞ − ∞
grounds. For example, what does F(x) + fn(x) mean at a point where F(x) = ∞
and fn(x) = −∞? To eliminate such problems, replace F by F{F < ∞} and fn

by fn{F < ∞}, then appeal to Lemma <26> in the next Section to ensure that the
integrals are not affected.

The function F is said to dominate the sequence { fn}. The assumption in
Theorem <22> could also be written as µ

(
supn | fn|

)
< ∞, with F := supn | fn| as

the dominating function. It is a common mistake amongst students new to the result
to allow F to depend on n.

Dominated Convergence turns up in many situations that you might not at first
recognize as examples of an interchange in the order of two limit procedures.

<23> Example. Do you know why

d

dt

∫ 1

0
ext x5/2(1 − x)3/2 dx =

∫ 1

0
ext x7/2(1 − x)3/2 dx ?

Of course I just differentiated under the integral sign, but why is that allowed? The
neatest justification uses a Dominated Convergence argument.

More generally, for each t in an interval (−δ, δ) about the origin let f (·, t) be a
µ-integrable function on X, such that the function f (x, ·) is differentiable in (−δ, δ)
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for each x . We need to justify taking the derivative at t = 0 inside the integral, to
conclude that

<24>
d

dt

(
µx f (x, t)

) ∣∣∣
t=0

= µx

(
∂

∂t
f (x, t)

∣∣∣
t=0

)
.

Domination of the partial derivative will suffice.
Write g(t) for µx f (x, t) and �(x, t) for the partial derivative ∂

∂t f (x, t). Suppose
there exists a µ-integrable function M such that

|�(x, t)| ≤ M(x) for all x , all t ∈ (−δ, δ).

To establish <24>, it is enough to show that

<25>
g(hn) − g(0)

hn
→ µx�(x, 0)

for every sequence {hn} of nonzero real numbers tending to zero. (Please make sure
that you understand why continuous limits can be replaced by sequential limits in this
way. It is a common simplification.) With no loss of generality, suppose δ > hn > 0
for all n. The ratio on the left-hand side of <25> equals the µ integral of the
function fn(x) := ( f (x, hn) − f (x, 0)) /hn . By assumption, fn(x) → �(x, 0) for
every x . The sequence { fn} is dominated by M: by the mean-value theorem, for
each x there exists a tx in (−hn, hn) ⊆ (−δ, δ) for which | fn(x)| = |�(x, tx )| ≤ M(x).
An appeal to Dominated Convergence completes the argument.�

6. Negligible sets

A set N in A for which µN = 0 is said to be µ-negligible. (Some authors use
the term µ-null, but I find it causes confusion with null as a name for the empty
set.) As the name suggests, we can usually ignore bad things that happen only on
a negligible set. A property that holds everywhere except possibly for those x in a
µ-negligible set of points is said to hold µ-almost everywhere or µ-almost surely,
abbreviated to a.e. [µ] or a.s. [µ], with the [µ] omitted when understood.

There are several useful facts about negligible sets that are easy to prove and
exceedingly useful to have formally stated. They depend on countable additivity,
via its Monotone Convergence generalization. I state them only for nonnegative
functions, leaving the obvious extensions for L1(µ) to you.

<26> Lemma. For every measure µ:

(i) if g ∈ M+ and µg < ∞ then g < ∞ a.e. [µ];

(ii) if g, h ∈ M+ and g = h a.e. [µ] then µg = µh;

(iii) if N1, N2, . . . is a sequence of negligible sets then
⋃

i Ni is also negligible;

(iv) if g ∈ M+ and µg = 0 then g = 0 a.e. [µ].

Proof. For (i): Integrate out the inequality g ≥ n{g = ∞} for each positive integer n
to get ∞ > µg ≥ nµ{g = ∞}. Let n tend to infinity to deduce that µ{g = ∞} = 0.

For (ii): Invoke the increasing and Monotone Convergence properties of
integrals, starting from the pointwise bound h ≤ g +∞{h �= g} = limn (g + n{h �= g})
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to deduce that µh ≤ limn (µg + nµ{h �= g}) = µg. Reverse the roles of g and h to
get the reverse inequality.

For (iii): Invoke Monotone Convergence for the right-hand side of the pointwise
inequality ∪i Ni ≤ ∑

i Ni to get µ (∪i Ni ) ≤ µ
(∑

i Ni
) = ∑

i µNi = 0.
For (iv): Put Nn := {g ≥ 1/n} for n = 1, 2, . . . . Then µNn ≤ nµg = 0, from

which it follows that {g > 0} = ⋃
n Nn is negligible.�

Remark. Notice the appeals to countable additivity, via the Monotone
Convergence property, in the proofs. Results such as (iv) fail without countable
additivity, which might trouble those brave souls who would want to develop a
probability theory using only finite additivity.

Property (iii) can be restated as: if A ∈ A and A is covered by a countable
family of negligible sets then A is negligible. Actually we can drop the assumption
that A ∈ A if we enlarge the sigma-field slightly.

<27> Definition. The µ-completion of the sigma-field A is the class Aµ of all those
sets B for which there exist sets A0, A1 in A with A0 ⊆ B ⊆ A1 and µ(A1\A0) = 0.

You should check that Aµ is a sigma-field and that µ has a unique extension
to a measure on Aµ defined by µB := µA0 = µA1, with A0 and A1 as in the
Definition. More generally, for each f in M+(X,Aµ), you should show that there
exist functions f0, g0 in M+(X,A) for which f0 ≤ f ≤ f0 + g0 and µg0 = 0. Of
course, we then have µ f := µ f0.

The Lebesgue sigma-field on the real line is the completion of the Borel
sigma-field with respect to Lebesgue measure.

<28> Example. Here is one of the standard methods for proving that some measurable
set A has zero µ measure. Find a measurable function f for which f (x) > 0, for
all x in A, and µ( f A) = 0. From part (iv) of Lemma <26> deduce that f A = 0
a.e. [µ]. That is, f (x) = 0 for almost all x in A. The set A = {x ∈ A : f (x) > 0}
must be negligible.�

Many limit theorems in probability theory assert facts about sequences that
hold only almost everywhere.

<29> Example. (Generalized Borel-Cantelli lemma) Suppose { fn} is a sequence in M+

for which
∑

n µ fn < ∞. By Monotone Convergence, µ
∑

n fn = ∑
n µ fn < ∞.

Part (i) of Lemma <26> then gives
∑

n fn(x) < ∞ for µ almost all x .
For the special case of probability measure with each fn an indicator function

of a set in A, the convergence property is called the Borel-Cantelli lemma: If∑
n PAn < ∞ then

∑
n An < ∞ almost surely. That is,

P{ω ∈ 	 : ω ∈ An for infinitely many n} = 0,

a trivial result that, nevertheless, is the basis for much probabilistic limit theory.
The event in the last display is often written in abbreviated form, {An i. o.}.

Remark. For sequences of independent events, there is a second part to
the Borel-Cantelli lemma (Problem [1]), which asserts that if

∑
n PAn = ∞ then

P{An i. o.} = 1. Problem [2] establishes an even stronger converse, replacing
independence by a weaker limit property.
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The Borel-Cantelli argument often takes the following form when invoked
to establish almost sure convergence. You should make sure you understand the
method, because the details are usually omitted in the literature.

Suppose {Xn} is a sequence of random variables (all defined on the same 	)
for which

∑
n P{|Xn| > ε} < ∞ for each ε > 0. By Borel-Cantelli, to each ε > 0

there is a P-negligible set N (ε) for which
∑

n{|Xn(ω)| > ε} < ∞ if ω ∈ N (ε)c. A
sum of integers converges if and only if the summands are eventually zero. Thus to
each ω in N (ε)c there exists a finite n(ε, ω) such that |Xn(ω)| ≤ ε when n ≥ n(ε, ω).

We have an uncountable family of negligible sets {N (ε) : ε > 0}. We are allowed
to neglect only countable unions of negligible sets. Replace ε by a sequence of
values such as 1, 1/2, 1/3, 1/4, . . . , tending to zero. Define N := ⋃∞

k=1 N (1/k),
which, by part (iii) of Lemma <26>, is negligible. For each ω in N c we have
|Xn(ω)| ≤ 1/k when n ≥ n(1/k, ω). Consequently, Xn(ω) → 0 as n → ∞ for each
ω in N c; the sequence {Xn} converges to zero almost surely.�

For measure theoretic arguments with a fixed µ, it is natural to treat as identical
those functions that are equal almost everywhere. Many theorems have trivial modi-
fications with equalities replaced by almost sure equalities, and convergence replaced
by almost sure convergence, and so on. For example, Dominated Convergence holds
in a slightly strengthened form:

Let { fn} be a sequence of measurable functions for which fn(x) → f (x) at µ

almost all x . Suppose there exists a µ-integrable function F , which does not
depend on n, such that | fn(x)| ≤ F(x) for µ almost all x and all n. Then
µ fn → µ f .

Most practitioners of probability learn to ignore negligible sets (and then suffer
slightly when they come to some stochastic process arguments where the handling
of uncountable families of negligible sets requires more delicacy). For example,
if I could show that a sequence { fn} converges almost everywhere I would hardly
hesitate to write: Define f := limn fn . What happens at those x where fn(x) does
not converge? If hard pressed I might write:

Define f (x) :=
{

limn fn(x) on the set where the limit exists,
0 otherwise.

You might then wonder if the function so-defined were measurable (it is), or if the
set where the limit exists is measurable (it is). A sneakier solution would be to
write: Define f (x) := lim supn fn(x). It doesn’t much matter what happens on the
negligible set where the limsup is not equal to the liminf, which happens only when
the limit does not exist.

A more formal way to equate functions equal almost everywhere is to work with
equivalence classes, [ f ] := {g ∈ M : f = g a.e. [µ]}. The almost sure equivalence
also partitions L1(µ) into equivalence classes, for which we can define µ[ f ] := µg
for an arbitrary choice of g from [ f ]. The collection of all these equivalence classes
is denoted by L1(µ). The L1 norm, ‖[ f ]‖1 := ‖ f ‖1, is a true norm on L1, because
[ f ] equals the equivalence class of the zero function when ‖[ f ]‖1 = 0. Few authors
are careful about maintaining the distinction between f and [ f ], or between L1(µ)

and L1(µ).
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*7. Lp spaces

For each real number p with p ≥ 1 the Lp-norm is defined on M(X, A, µ) by
‖ f ‖p := (µ| f |p)1/p. Problem [17] shows that the map f �→ ‖ f ‖p satisfies the
triangle inequality, ‖ f + g‖p ≤ ‖ f ‖p + ‖g‖p, at least when restricted to real-valued
functions in M.

As with the L1-norm, it is not quite correct to call ‖ · ‖p a norm, for two
reasons: there are measurable functions for which ‖ f ‖p = ∞, and there are nonzero
measurable functions for which ‖ f ‖p = 0. We avoid the first complication by
restricting attention to the vector space Lp := Lp(X,A, µ) of all real-valued, A-
measurable functions for which ‖ f ‖p < ∞. We could avoid the second complication
by working with the vector space L p := L p(X,A, µ) of µ-equivalence classes of
functions in Lp(X,A, µ). That is, the members of L p are the µ-equivalence classes,
[ f ] := {g ∈ Lp : g = f a.e. [µ]}, with f in Lp. (See Problem [20] for the limiting
case, p = ∞.)

Remark. The correct term for ‖ · ‖p on Lp is pseudonorm, meaning that it
has all the properties of a norm (triangle inequality, and ‖c f ‖ = |c| ‖ f ‖ for real
constants c) except that it might be zero for nonzero functions. Again, few authors
are careful about maintaining the distinction between Lp and L p .

Problem [19] shows that the norm defines a complete pseudometric on Lp

(and a complete metric on L p). That is, if { fn} is a Cauchy sequence of functions
in Lp (meaning that ‖ fn − fm‖p → 0 as min(m, n) → ∞) then there exists a
function f in Lp for which ‖ fn − f ‖n → 0. The limit function f is unique up to a
µ-equivalence.

For our purposes, the case where p equals 2 will be the most important. The
pseudonorm is then generated by an inner product (or, more correctly, a “pseudo”
inner product), 〈 f, g〉 := µ( f g). That is, ‖ f ‖2

2 := 〈 f, f 〉. The inner product has the
properties:

(a) 〈α f + βg, h〉 = α〈 f, h〉 + β〈g, h〉 for all real α, β all f, g, h in L2;

(b) 〈 f, g〉 = 〈g, f 〉 for all f , g in L2;

(c) 〈 f, f 〉 ≥ 0 with equality if and only if f = 0 a.e. [µ].

If we work with the equivalence classes of L2 then (c) is replaced by the assertion
that 〈 [ f ], [ f ] 〉 equals zero if and only if [ f ] is zero, as required for a true inner
product.

A vector space equipped with an inner product whose corresponding norm
defines a complete metric is called a Hilbert space, a generalization of ordinary
Euclidean space. Arguments involving Hilbert spaces look similar to their analogs
for Euclidean space, with an occasional precaution against possible difficulties
with infinite dimensionality. Many results in Probability and Statistics rely on
Hilbert space methods: information inequalities; the Blackwell-Rao theorem;
the construction of densities and abstract conditional expectations; Hellinger
differentiability; prediction in time series; Gaussian process theory; martingale
theory; stochastic integration; and much more.
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Some of the basic theory for Hilbert space is established in Appendix B. For
the next several Chapters, the following two Hilbert space results, specialized to L2

spaces, will suffice.

(1) Cauchy-Schwarz inequality: |µ( f g)| ≤ ‖ f ‖2 ‖g‖2 for all f, g in L2(µ),
which follows from the Hölder inequality (Problem [15]).

(2) Orthogonal projections: Let H0 be a closed subspace of L2(µ). For each f
in L2 there is a f0 in H0, the (orthogonal) projection of f onto H0, for which
f − f0 is orthogonal to H0, that is, 〈 f − f0, g〉 = 0 for all g in H0. The
point f0 minimizes ‖ f − h‖ over all h in H0. The projection f0 is unique up
to a µ-almost sure equivalence.

Remark. A closed subspace H0 of L2 must contain all f in L2 for which there
exist fn ∈ H0 with ‖ fn − f ‖2 → 0. In particular, if f belongs to H0 and g = f
a.e. [µ] then g must also belong to H0. If H0 is closed, the set of equivalence
classes H̃0 = { [ f ] : f ∈ H0} must be a closed subspace of L2(µ), and H0 must
equal the union of all equivalence classes in H̃0.

For us the most important subspaces of L2(X,A, µ) will be defined by the sub-
sigma-fields A0 of A. Let H0 = L2(X,A0, µ). The corresponding L2(X,A0, µ) is a
Hilbert space in its own right, and therefore it is a closed subspace of L2(X,A, µ).
Consequently H0 is a complete subspace of L2: if { fn} is a Cauchy sequence in H0

then there exists an f0 ∈ H0 such that ‖ fn − f0‖2 → 0. However, { fn} also converges
to every other A-measurable f for which f = f0 a.e. [µ]. Unless A0 contains all
µ-negligible sets from A, the limit f need not be A0-measurable; the subspace H0

need not be closed. If we work instead with the corresponding L2(X,A, µ) and
L2(X,A0, µ) we do get a closed subspace, because the equivalence class of the limit
function is uniquely determined.

*8. Uniform integrability

Suppose { fn} is a sequence of measurable functions converging almost surely
to a limit f . If the sequence is dominated by some µ-integrable function F ,
then 2F ≥ | fn − f | → 0 almost surely, from which it follows, via Dominated
Convergence, that µ| fn − f | → 0. That is, domination plus almost sure convergence
imply convergence in L1(µ) norm. The converse is not true: µ equal to Lebesgue
measure and fn(x) := n{(n+1)−1 < x ≤ n−1} provides an instance of L1 convergence
without domination.

At least when we deal with finite measures, there is an elegant circle of
equivalences, involving a concept (convergence in measure) slightly weaker than
almost sure convergence and a concept (uniform integrability) slightly weaker than
domination. With no loss of generality, I will explain the connections for a sequence
of random variables {Xn} on a probability space (	, F, P).

The sequence is said to converge in probability to a random variable X ,

sometimes written Xn
P−→ X , if P{|Xn − X | > ε} → 0 for each ε > 0. Problem [14]

guides you through the proofs of the following facts.
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(a) If {Xn} converges to X almost surely then Xn → X in probability, but the
converse is false: there exist sequences that converge in probability but not
almost surely.

(b) If {Xn} converges in probability to X , there is an increasing sequence of
positive integers {n(k)} for which limk→∞ Xn(k) = X almost surely.

If a random variable Z is integrable then a Dominated Convergence argument
shows that P|Z |{ |Z | > M} → 0 as M → ∞. Uniform integrability requires that
the convergence holds uniformly over a class of random variables. Very roughly
speaking, it lets us act almost as if all the random variables were bounded by a
constant M , at least as far as L1 arguments are concerned.

<30> Definition. A family of random variables {Zt : t ∈ T } is said to be uniformly
integrable if supt∈T P|Zt |{ |Zt | > M} → 0 as M → ∞.

It is sometimes slightly more convenient to check for uniform integrability by
means of an ε-δ characterization.

<31> Lemma. A family of random variables {Zt : t ∈ T } is uniformly integrable if and
only if both the following conditions hold:

(i) supt∈T P|Zt | < ∞
(ii) for each ε > 0 there exists a δ > 0 such that supt∈T P|Zt |F ≤ ε for every

event F with PF < δ.

Remark. Requirement (i) is superfluous if, for each δ > 0, the space 	 can be
partitioned into finitely many pieces each with measure less than δ.

Proof. Given uniform integrability, (i) follows from P|Zt | ≤ M + P|Zt |{ |Zt | > M},
and (ii) follows from P|Zt |F ≤ MPF + P|Zt |{ |Zt | > M}.

Conversely, if (i) and (ii) hold then the event { |Zt | > M} is a candidate for
the F in (ii) when M is so large that P{ |Zt | > M} ≤ supt∈T P|Zt |/M < δ. It follows
that supt∈T P|Zt |{ |Zt | > M} ≤ ε if M is large enough.�

Xn → X almost surely domination

Xn → X in probability + uniform integrability

Xn → X in L1(P), with each Xn integrable

subsequence(a) (b)

The diagram summarizes the interconnections between the various convergence
concepts, with each arrow denoting an implication. The relationship between almost
sure convergence and convergence in probability corresponds to results (a) and (b)
noted above. A family {Zt : t ∈ T } dominated by an integrable random variable Y
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is also uniformly integrable, because Y {Y ≥ M} ≥ |Zt |{|Zt | ≥ M} for every t . Only
the implications leading to and from the box for the L1 convergence remain to be
proved.

<32> Theorem. Let {Xn : n ∈ N} be a sequence of integrable random variables. The
following two conditions are equivalent.

(i) The sequence is uniformly integrable and it converges in probability to a
random variable X∞, which is necessarily integrable.

(ii) The sequence converges in L1 norm, P|Xn − X∞| → 0, with a limit X∞ that
is necessarily integrable.

Proof. Suppose (i) holds. The assertion about integrability of X∞ follows from
Fatou’s lemma, because |Xn′ | → |X∞| almost surely along some subsequence, so
that P|X∞| ≤ lim infn′ P|Xn′ | ≤ supn P|Xn| < ∞. To prove L1 convergence, first split
according to whether |Xn − X∞| is less than ε or not, and then split according to
whether max (|Xn|, |X∞|) is less than some large constant M or not.

P|Xn − X∞| ≤ ε + P (|Xn| + |X∞|) {|Xn − X∞| > ε}
≤ ε + 2MP{|Xn − X∞| > ε} + P (|Xn| + |X∞|) {|Xn| ∨ |X∞| > M}.

Split the event {|Xn| ∨ |X∞| > M} according to which of the two random variables
is larger, to bound the last term by 2P|Xn|{|Xn| > M} + 2P|X∞|{|X∞| > M}. Invoke
uniform integrability of {Xn} and integrability of X∞ to find an M that makes this
bound small, uniformly in n. With M fixed, the convergence in probability sends
MP{|Xn − X∞| > ε} to zero as n → ∞.

Conversely, if the sequence converges in L1, then X∞ must be integrable,
because P|X∞| ≤ P|Xn| + P|Xn − X∞| for each n. When |Xn| ≤ M or |X∞| > M/2,
the inequality

|Xn|{ |Xn| > M} ≤ |X∞|{ |X∞| > M/2} + 2|Xn − X∞|,
is easy to check; and when |X∞| ≤ M/2 and |Xn| > M , it follows from the inequality
|Xn − X∞| ≥ |Xn| − |X∞| ≥ |Xn|/2. Take expectations, choose M large enough
to make the contribution from X∞ small, then let n tend to infinity to find an n0

such that P|Xn|{ |Xn| > M} < ε for n > n0. Increase M if necessary to handle the
corresponding tail contributions for n ≤ n0.�

9. Image measures and distributions

Suppose µ is a measure on a sigma-field A of subsets of X and T is a map from X

into a set Y, equipped with a sigma-field B. If T is A\B-measurable we can carry
µ over to Y, by defining

<33> νB := µ(T −1 B) for each B in B.

Actually the operation is more one of carrying the sets

T-1B

BT-1

( X,A,µ)

(Y,B,  )

back to the measure rather than carrying the measure over
to the sets, but the net result is the definition of a new set
function on B.
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It is easy to check that ν is a measure on B, using facts such as T −1 (Bc) =(
T −1 B

)c and T −1 (∪i Bi ) = ∪i T −1 Bi . It is called the image measure of µ under T ,
or just the image measure, and is denoted by µT −1 or µT or T (µ), or even just T µ.
The third and fourth forms, which I prefer to use, have the nice property that if µ is
a point mass concentrated at x then T (µ) denotes a point mass concentrated at T (x).

Starting from definition <33> we could prove facts about integrals with respect
to the image measure ν. For example, we could show

<34> νg = µ(g ◦ T ) for all g ∈ M+(Y,B).

The small circle symbol ◦ denotes the composition of functions: (g◦T )(x) := g(T x).
The proof of <34> could follow the traditional path: first argue by linearity

from <33> to establish the result for simple functions; then take monotone limits of
simple functions to extend to M+(Y,B).

There is another method for constructing image measures that gets <34> all in
one step. Define an increasing linear functional ν on M+(Y,B) by νg := µ(g ◦ T ). It
inherits the Monotone Convergence property directly from µ, because, if 0 ≤ gn ↑ g
then 0 ≤ gn ◦ T ↑ g ◦ T . By Theorem <13> it corresponds to a uniquely determined
measure on B. When restricted to indicator functions of measurable sets the new
measure coincides with the measure defined by <33>, because if g is the indicator
function of B then g ◦ T is the indicator function of T −1 B. (Why?) We have gained
a theorem with almost no extra work, by starting with the linear functional as the
definition of the image measure.

Using the notation T µ for image measure, we could rewrite the defining
equality as (T µ)(g) := µ(g ◦ T ) at least for all g ∈ M+(Y,B), a relationship that I
find easier to remember.

Remark. In the last sentence I used the qualifier at least, as a reminder that
the equality could easily be extended to other cases. For example, by splitting into
positive and negative parts then subtracting, we could extend the equality to functions
in L1(Y,B, ν). And so on.

Several familiar probabilistic objects are just image measures. If X is a random
variable, the image measure X (P) on B(R) is often written PX , and is called the
distribution of X. More generally, if X and Y are random variables defined on the
same probability space, they together define a random vector, a (measurable—see
Chapter 4) map T (ω) = (X (ω), Y (ω)) from 	 into R

2. The image measure T (P)

on B(R2) is called the joint distribution of X and Y, and is often denoted by PX,Y .
Similar terminology applies for larger collections of random variables.

Image measures also figure in a construction that is discussed nonrigorously
in many introductory textbooks. Let P be a probability measure on B(R). Its
distribution function (also known as a cumulative distribution function) is defined
by FP(x) := P(−∞, x] for x ∈ R. Don’t confuse distribution, as a synonym for
probability measure, with distribution function, which is a function derived from
the measures of a particular collection of sets. The distribution function has the
following properties.

(a) It is increasing, with limx→−∞ FP(x) = 0 and limx→∞ FP(x) = 1.
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(b) It is continuous from the right: to each ε > 0 and x ∈ R, there exists a δ > 0
such that FP(x) ≤ FP(y) ≤ FP(x) + ε for x ≤ y ≤ x + δ.

Property (a) follows from that fact that the integral is an increasing functional,
and from Dominated Convergence applied to the sequences (−∞, −n] ↓ ∅ and
(−∞, n] ↑ R as n → ∞. Property (b) also follows from Dominated Convergence,
applied to the sequence (−∞, x + 1/n] ↓ (−∞, x].

Except in introductory textbooks, and in works dealing with the order properties
of the real line (such as the study of ranks and order statistics), distribution functions
have a reduced role to play in modern probability theory, mostly in connection
with the following method for building measures on B(R) as images of Lebesgue
measure. In probability theory the construction often goes by the name of quantile
transformation.

<35> Example. There is a converse to the assertions (a) and (b) about distribution
functions. Suppose F is a right-continuous, increasing function on R for which
limx→−∞ F(x) = 0 and limx→∞ F(x) = 1. Then there exists a probability measure P
such that P(−∞, x] = F(x) for all real x . To construct such a P , consider the
quantile function q, defined by q(t) := inf{x : F(x) ≥ t} for 0 < t < 1.

By right continuity of the increasing function F , the set {x ∈ R : F(x) ≥ t} is
a closed interval of the form [α, ∞), with α = q(t). That is, for all x ∈ R and all
t ∈ (0, 1),

<36> F(x) ≥ t if and only if x ≥ q(t).

In general there are many plausible, but false, equalities related to <36>. For
example, it is not true in general that F(q(t)) = t . However, if F is continuous
and strictly increasing, then q is just the inverse function of F , and the plausible
equalities hold.

Let m denote Lebesgue measure restricted to the Borel sigma-field on (0, 1).
The image measure P := q(m) has the desired property,

P(−∞, x] = m{t : q(t) ≤ x} = m{t : t ≤ F(x)} = F(x),

the first equality by definition of the image measure, and the second by equality <36>.
The result is often restated as: if ξ has a Uniform(0, 1) distribution then q(ξ) has
distribution function F.�

10. Generating classes of sets

To prove that all sets in a sigma-field A have some property one often resorts to a
generating-class argument. The simplest form of such an argument has three steps:

(i) Show that all members of a subclass E have the property.

(ii) Show that A ⊆ σ(E).

(iii) Show that A0 := {A ∈ A : A has the property } is a sigma-field.

Then one deduces that A0 = σ(A0) ⊇ σ(E) ⊇ A, whence A0 = A. That is, the
property holds for all sets in A.
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For some properties, direct verification of all the sigma-field requirements
for A0 proves too difficult. In such situations an indirect argument sometimes
succeeds if E has some extra structure. For example, if is possible to establish
that A0 is a λ-system of sets, then one needs only check one extra requirement for E

in order to produce a successful generating-class argument.

<37> Definition. A class D of subsets of X is called a λ-system if

(i) X ∈ D,

(ii) if D1, D2 ∈ D and D1 ⊇ D2 then D1\D2 ∈ D,

(iii) if {Dn} is an increasing sequence of sets in D then ∪∞
1 Dn ∈ D.

Remark. Some authors start from a slightly different definition, replacing
requirement (iii) by

(iii)′ if {Dn} is a sequence of disjoint sets in D then ∪∞
1 Dn ∈ D.

The change in definition would have little effect on the role played by λ-systems.
Many authors (including me, until recently) use the name Dynkin class instead

of λ-system, but the name Sierpiński class would be more appropriate. See the Notes
at the end of this Chapter.

Notice that a λ-system is also a sigma-field if and only if it is stable under
finite intersections. This stability property can be inherited from a subclass E, as
in the next Theorem, which is sometimes referred to as the π–λ theorem. The π

stands for product, an indirect reference to the stability of the subclass E under
finite intersections (products). I think that the letter λ stands for limit, an indirect
reference to property (iii).

<38> Theorem. If E is stable under finite intersections, and if D is a λ-system with
D ⊇ E, then D ⊇ σ(E).

Proof. It would be enough to show that D is a sigma-field, by establishing that it
is stable under finite intersections, but that is a little more than I know how to do.
Instead we need to work with a (possibly) smaller λ-system D0, with D ⊇ D0 ⊇ E,
for which generating class arguments can extend the assumption

<39> E1 E2 ∈ E for all E1, E2 in E

to an assertion that

<40> D1 D2 ∈ D0 for all D1, D2 in D0.

It will then follow that D0 is a sigma-field, which contains E, and hence D0 ⊇ σ(E).
The choice of D0 is easy. Let {Dα : α ∈ A} be the collection of all λ-systems

with Dα ⊇ E, one of them being the D we started with. Let D0 equal the intersection
of all these Dα. That is, let D0 consist of all sets D for which D ∈ Dα for each α.
I leave it to you to check the easy details that prove D0 to be a λ-system. In other
words, D0 is the smallest λ-system containg E; it is the λ-system generated by E.

To upgrade <39> to <40> we have to replace each Ei on the left-hand side by
a Di in D0, without going outside the class D0. The trick is to work one component at
a time. Start with the E1. Define D1 := {A : AE ∈ D0 for each E ∈ E}. From <39>,
we have D1 ⊇ E. If we show that D1 is a λ-system then it will follow that D1 ⊇ D0,
because D0 is the smallest λ-system containing E. Actually, the assertion that D1 is
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λ-system is trivial; it follows immediately from the λ-system properties for D0 and
identities like (A1\A2)E = (A1 E)\(A2 E) and (∪i Ai ) E = ∪(Ai E).

The inclusion D1 ⊇ D0 implies that D1 E2 ∈ D0 for all D1 ∈ D0 and all E2 ∈ E.
Put another way—this step is the only subtlety in the proof—we can assert that the
class D2 := {B : B D ∈ D0 for each D ∈ D0} contains E. Just write D1 instead of D,
and E1 instead of B, in the definition to see that it is only a matter of switching the
order of the sets.

Argue in the same way as for D1 to show that D2 is also a λ-system. It then
follows that D2 ⊇ D0, which is another way of expressing assertion <40>.�

The proof of the last Theorem is typical of many generating class arguments,
in that it is trivial once one knows what one has to check. The Theorem, or its
analog for classes of functions (see the next Section), will be my main method for
establishing sigma-field properties. You will be getting plenty of practice at filling
in the details behind frequent assertions of “a generating class argument shows that
. . . .” Here is a typical example to get you started.

<41> Exercise. Let µ and ν be finite measures on B(R) with the same distribution
function. That is, µ(−∞, t] = ν(−∞, t] for all real t . Show that µB = νB for all
B ∈ B(R), that is, µ = ν as Borel measures.
Solution: Write E for the class of all intervals (−∞, t], with t ∈ R. Clearly E is
stable under finite intersections. From Example <4>, we know that σ(E) = B(R).
It is easy to check that the class D := {B ∈ B(R) : µB = νB} is a λ-system.
For example, if Bn ∈ D and Bn ↑ B then µB = limn µBn = limn νBn = νB, by
Monotone Convergence. It follows from Theorem <38> that D ⊇ σ(E) = B(R),
and the equality of the two Borel measures is established.�

When you employ a λ-system argument be sure to verify the properties required
of E. The next Example shows what can happen if you forget about the stability
under finite intersections.

<42> Example. Consider a set X consisting of four points, labelled nw, ne, sw, and se.
Let E consist of X and the subsets N = {nw, ne}, S = {sw, se}, E = {ne, se}, and
W = {nw, sw}. Notice that E generates the sigma-field of all subsets of X, but it is
not stable under finite intersections. Let µ and ν be probability measures for which

µ(nw) = 1/2 µ(ne) = 0 ν(nw) = 0 ν(ne) = 1/2
µ(sw) = 0 µ(se) = 1/2 ν(sw) = 1/2 ν(se) = 0

Both measures give the the value 1/2 to each of N , S, E , and W , but they differ in
the values they give to the four singletons.�

*11. Generating classes of functions

Theorem <38> is often used as the starting point for proving facts about measurable
functions. One first invokes the Theorem to establish a property for sets in a sigma-
field, then one extends by taking limits of simple functions to M+ and beyond, using
Monotone Convergence and linearity arguments. Sometimes it is simpler to invoke
an analog of the λ-system property for classes of functions.
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*1. Generating classes of functions

Theorem <Dynkin.thm> is often used as the starting point for proving facts about
measurable functions. One first invokes the Theorem to establish a property for
sets in a sigma-field, then one extends by taking limits of simple functions to M+

and beyond, using Monotone Convergence and linearity arguments. Sometimes it is
simpler to invoke an analog of the λ-system property for classes of functions.

<1> Definition. Let H be a set of bounded, real-valued functions on a set X. Call H

a λ-space if:

(i) H is a vector space

(i) each constant function belongs to H;

(ii) if {hn} is an increasing sequence of functions in H whose pointwise limit h
is bounded then h ∈ H.

The sigma-field properties of λ-spaces are slightly harder to establish than their
λ-system analogs, but the reward of more streamlined proofs will make the extra,
one-time effort worthwhile. First we need an analog of the fact that a λ-system that
is stable under finite intersections is also a sigma-field.

Remember that σ(H) is the smallest σ -field on X for which each h in H is
σ(H)\B(R)-measurable. It is the σ -field generated by the collection of sets {h ∈ B}
with h ∈ H and B ∈ B(R). It is also generated by

EH := { {h < c} : h ∈ H, c ∈ R}.
<2> Lemma. If a λ-space H is stable under the formation of pointwise products of

pairs of functions then it consists of all bounded, σ(H)-measurable functions.

Proof. By definition, every function in H is σ(H)-measurable. The proof that every
bounded, σ(H)-measurable function belongs to H will follow from the following
four facts:

(a) H is stable under uniform limits

(b) if h1 and h2 are in H then so are h1 ∨ h2 and h1 ∧ h2
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(c) the collection of sets A0 := {A ∈ A : A ∈ H} is a σ -field

(d) EH ⊆ A0 and hence σ(H) = σ(EH) ⊆ A0

For suppose g is a bounded, σ(H)-measurable function. With no loss of generality
(or by means of some linear rescaling) we may assume that 0 ≤ g ≤ 1. For each
real c, the (indicator function of the) σ(H)-measurable set {g ≥ c} belongs to H,
by virtue of (d) and (c). The vector space property of H ensures that the simple
function gn := 2−n

∑2n

i=1{g ≥ i/2n} also belongs to H. Stability of H under uniform
limits then implies that g ∈ H.

Proof of (a). Suppose hn → h uniformly, with hn ∈ H. Write δn for 2−n . With no
loss of generality we may suppose hn + δn ≥ h ≥ hn − δn for all n. Notice that

hn + 3δn = hn + δn + δn−1 ≥ h + δn−1 ≥ hn−1.

the functions gn := hn + 3(δ1 + . . . + δn) all belong to H, and gn ↑ h + 3. It follows
that h + 3 ∈ H, and hence, h ∈ H.

Proof of (b). It is enough if we show that h+ ∈ H for each h in H, because
h1 ∨ h2 = h1 + (h2 − h1)

+ and − (
h1 ∧ h2

) = (−h1) ∨ (−h2). Suppose c ≤ h ≤ d, for
constants c and d. First note that, for every polynomial p(y) = a0 + a1 y . . . + am ym ,
we have

p(h) = a0 + a1h + . . . + amhm ∈ H,

because the constant function a0 and each of the powers hk belong to the vector
space H. By a minor extension of the Weierstrass approximation result from
Problem [weierstrass], the continuous function y 	→ y+ can be uniformly
approximated by a polynomial on the interval [c, d]. That is, there exists a sequence
of polynomials pn such that supc≤y≤d |pn(y) − y+| → 0 as n → ∞. In particular, h+

is a uniform limit of pn(h), so that h+ ∈ H by virtue of (a).

Proof of (c). The fact that 1 ∈ H and the stability of H under monotone limits,
differences, and finite products implies that A0 is a λ-system of sets that is stable
under finite intersections, that is, A0 is a σ -field.

Proof of (d). Suppose h ∈ H and c ∈ R. By (b), the function

h0 := (
1 + h − c

)+ ∧ 1

belongs to H. Notice that 0 ≤ h0 ≤ 1 and {h0 = 1} = {h ≥ c}. As a monotone
increasing limit of functions 1 − hn

0 from H, the (indicator function of the) set
{h < c} also belongs to H.�

<3> Theorem. Let G be a set of functions from a λ-space H. If G is stable under the
formation of pointwise products of pairs of functions then H contains all bounded,
σ(G)-measurable functions.

Proof. Let H0 be the smallest λ-space containing G. By Lemma <2>, it is enough
to show that H0 is stable under pairwise products.
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Argue as in Theorem <Dynkin.thm> for λ-systems of sets. An almost
routine calculation shows that H1 := {h ∈ H0 : hg ∈ H0 for all g in G } is a λ-space
containing G. The only subtlety lies in showing that H1 is stable under monotone
increasing limits. If hn ∈ H1 and hn ↑ h and g ≥ 0, then ghn ↑ gh. At points
where g is strictly negative, the sequence ghn would not be increasing. However,
we can find a constant C large enough that g + C ≥ 0 everywhere, and hence gh
belongs to H0 as a monotone inceasing limit of H0 functions hng + Chn − Ch. It
follows that H1 = H0. That is, h0g ∈ H0 for all h0 ∈ H0 and g ∈ G.

Similarly, H2 := {h ∈ H0 : h0h ∈ H0 for all h0 in H0 } is a λ-space. By the
result for H1 we have H2 ⊇ G, and hence H2 = H0. That is, H0 is stable under
products.�

<4> Exercise. Let µ be a finite measure on B(Rk). Write C0 for the vector space
of all continuous real functions on R

k with compact support. Suppose f belongs
to L1(µ). Show that for each ε > 0 there exists a g in C0 such that µ| f − g| < ε.
That is, show that C0 is dense in L1(µ) under its L1 norm.�
Solution: Define H as the collection of all bounded functions in L1(µ) that can
be approximated arbitrarily closely (in L1(µ) norm) by functions from C0. Check
that H is a λ-space. Trivially it contains C0. The sigma-field σ(C0) coincides with
the Borel sigma-field. Why? The class H consists of all bounded, nonnegative
Borel measurable functions.More detail needed?

See Problem [C0.dense2] for the extension of the approximation result to
infinite measures.�
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<43> Definition. Call a class H+ of bounded, nonnegative functions on a set X a
λ-cone if:

(i) H+ is a cone, that is, if h1, h2 ∈ H+ and α1 and α2 are nonnegative constants
then α1h1 + α2h2 ∈ H+;

(ii) each nonnegative constant function belongs to H+;

(iii) if h1, h2 ∈ H+ and h1 ≥ h2 then h1 − h2 ∈ H+;

(iv) if {hn} is an increasing sequence of functions in H+ whose pointwise limit h
is bounded then h ∈ H+.

Typically H+ consists of the nonnegative functions in a vector space of bounded
functions that is stable under pairwise maxima and minima.

Remark. The name λ-cone is not standard. I found it hard to come up with a
name that was both suggestive of the defining properties and analogous to the name
for the corresponding classes of sets. For a while I used the term Dynkin-cones but
abandoned it for historical reasons. (See the Notes.) I also toyed with the name
cdl-cone, as a reminder that the cone contains the (positive) constant functions
and that it is stable under (proper) differences and (monotone increasing) limits of
uniformly bounded sequences.

The sigma-field properties of λ-cones are slightly harder to establish than their
λ-system analogs, but the reward of more streamlined proofs will make the extra,
one-time effort worthwhile. First we need an analog of the fact that a λ-system that
is stable under finite intersections is also a sigma-field.

<44> Lemma. If a λ-cone H+ is stable under the formation of pointwise products of
pairs of functions then it consists of all bounded, nonnegative, σ(H+)-measurable
functions, where σ(H+) denotes the sigma-field generated by H+.

Proof. First note that H+ must be stable under uniform limits. For suppose hn → h
uniformly, with hn ∈ H+. Write δn for 2−n . With no loss of generality we may
suppose hn + δn ≥ h ≥ hn − δn for all n. Notice that

hn + 3δn = hn + δn + δn−1 ≥ h + δn−1 ≥ hn−1.

From the monotone convergence, 0 ≤ hn + 3(δ1 + . . . + δn) ↑ h + 3, deduce that
h + 3 ∈ H+, and hence, via the proper difference property (iii), h ∈ H+.

Via uniform limits we can now show that H+ is stable under composition
with any continuous nonnegative function f . Let h be a member of H+, bounded
above by a constant D. By a trivial generalization of Problem [25], there exists a
sequence of polynomials pn(·) such that sup0≤t≤D |pn(t)− f (t)| < 1/n. The function
fn(h) := pn(h) + 1/n takes only nonegative values, and it converges uniformly
to f (h). Suppose fn(t) = a0 + a1t + . . . + aktk . Then

fn(h) = (a+
0 + a+

1 h + . . . + a+
k hk) − (a−

0 + a−
1 h + . . . + a−

k hk) ≥ 0.

By virtue of properties (i) and (ii) of λ-cones, and the assumed stability under
products, both terms on the right-hand side belong to H+. The proper differencing
property then gives fn(h) ∈ H+. Pass uniformly to the limit to get f (h) ∈ H+.

Write E for the class of all sets of the form {h < C}, with h ∈ H+ and C
a positive constant. From Example <7>, every h in H+ is σ(E)-measurable, and
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hence σ(E) = σ(H+). For a fixed h and C , the continuous function (1 − (h/C)n)+

of h belongs to H+, and it increases monotonely to the indicator of {h < C}.
Thus the indicators of all sets in E belong to H+. The assumptions about H+

ensure that the class B of all sets whose indicator functions belong to H+ is stable
under finite intersections (products), complements (subtract from 1), and increasing
countable unions (montone increasing limits). That is, B is a λ-system, stable
under finite intersections, and containing E. It is a sigma-field containing E. Thus
B ⊇ σ(E) = σ(H+). That is, H+ contains all indicators of sets in σ(H+).

Finally, let k be a bounded, nonnegative, σ(H+)-measurable function. From
the fact that each of the sets {k ≥ i/2n}, for i = 1, . . . , 4n , belongs to the cone H+,
we have kn := 2−n

∑4n

i=1{k ≥ i/2n} ∈ H+. The functions kn increase monotonely
to k, which consequently also belongs to H+.�

<45> Theorem. Let H+ be a λ-cone of bounded, nonnegative functions, and G be a
subclass of H+ that is stable under the formation of pointwise products of pairs of
functions. Then H+ contains all bounded, nonnegative, σ(G)-measurable functions.

Proof. Let H+
0 be the smallest λ-cone containing G. From the previous Lemma, it

is enough to show that H+
0 is stable under pairwise products.

Argue as in Theorem <38> for λ-systems of sets. A routine calculation shows
that H+

1 := {h ∈ H+
0 : hg ∈ H+

0 for all g in G } is a λ-cone containing G, and
hence H+

1 = H+
0 . That is, h0g ∈ H+

0 for all h0 ∈ H+
0 and g ∈ G. Similarly, the class

H+
2 := {h ∈ H+

0 : h0h ∈ H+
0 for all h0 in H+

0 } is a λ-cone. By the result for H+
1 we

have H+
2 ⊇ G, and hence H+

2 = H+
0 . That is, H+

0 is stable under products.�
<46> Exercise. Let µ be a finite measure on B(Rk). Write C0 for the vector space

of all continuous real functions on R
k with compact support. Suppose f belongs

to L1(µ). Show that for each ε > 0 there exists a g in C0 such that µ| f − g| < ε.
That is, show that C0 is dense in L1(µ) under its L1 norm.�
Solution: Define H as the collection of all bounded functions in L1(µ) that
can be approximated arbitrarily closely by functions from C0. Check that the
class H+ of nonnegative functions in H is a λ-cone. Trivially it contains C

+
0 , the

class of nonnegative members of C0. The sigma-field σ(C+
0 ) coincides with the

Borel sigma-field. Why? The class H+ consists of all bounded, nonnegative Borel
measurable functions.

To approximate a general f in L1(µ), first reduce to the case of nonnegative
functions by splitting into positive and negative parts. Then invoke Dominated
Convergence to find a finite n for which µ| f +− f +∧n| < ε, then approximate f +∧n
by a member of C

+
0 . See Problem [26] for the extension of the approximation result

to infinite measures.�

12. Problems

[1] Suppose events A1, A2, . . ., in a probability space (	, F, P), are independent:
meaning that P(Ai1 Ai2 . . . Aik ) = PAi1PAi2 . . . PAik for all choices of distinct
subscripts i1, i2, . . . , ik , all k. Suppose

∑∞
i=1 PAi = ∞.
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(i) Using the inequality e−x ≥ 1 − x , show that

P max
n≤i≤m

Ai = 1 −
∏

n≤i≤m

(1 − PAi ) ≥ 1 − exp

(
−

∑
n≤i≤m

PAi

)
(ii) Let m then n tend to infinity, to deduce (via Dominated Convergence) that

P lim supi Ai = 1. That is, P{Ai i. o.} = 1.

Remark. The result gives a converse for the Borel-Cantelli lemma from
Example <29>. The next Problem establishes a similar result under weaker
assumptions.

[2] Let A1, A2, . . . be events in a probability space (	, F, P). Define Xn = A1 + . . .+ An

and σn = PXn . Suppose σn → ∞ and ‖Xn/σn‖2 → 1. (Compare with the inequality
‖Xn/σn‖2 ≥ 1, which follows from Jensen’s inequality.)

(i) Show that

{Xn = 0} ≤ (k − Xn)(k + 1 − Xn)

k(k + 1)

for each positive integer k.

(ii) By an appropriate choice of k (depending on n) in (i), deduce that
∑∞

1 Ai ≥ 1
almost surely.

(iii) Prove that
∑∞

m Ai ≥ 1 almost surely, for each fixed m. Hint: Show that the
two convergence assumptions also hold for the sequence Am, Am+1, . . . .

(iv) Deduce that P{ω ∈ Ai i. o. } = 1.

(v) If {Bi } is a sequence of events for which
∑

i PBi = ∞ and PBi Bj = PBiPBj

for i �= j , show that P{ω ∈ Bi i. o. } = 1.

[3] Suppose T is a function from a set X into a set Y, and suppose that Y is equipped
with a σ -field B. Define A as the sigma-field of sets of the form T −1 B, with B in B.
Suppose f ∈ M+(X,A). Show that there exists a B\B[0, ∞]-measurable function
g from Y into [0, ∞] such that f (x) = g(T (x)), for all x in X, by following these
steps.

(i) Show that A is a σ -field on X. (It is called the σ -field generated by the map T .
It is often denoted by σ(T ).)

(ii) Show that { f ≥ i/2n} = T −1 Bi,n for some Bi,n in B. Define

fn = 2−n
4n∑

i=1

{ f ≥ i/2n} and gn = 2−n
4n∑

i=1

Bi,n.

Show that fn(x) = gn(T (x)) for all x .

(iii) Define g(y) = lim sup gn(y) for each y in Y. Show that g has the desired
property. (Question: Why can’t we define g(y) = lim gn(y)?)

[4] Let g1, g2, . . . be A\B(R)-measurable functions from X into R. Show that
{lim supn gn > t} = ⋃

r∈Q
r>t

⋂∞
m=1

⋃
i≥m{gi > r}. Deduce, without any appeal to

Example <8>, that lim sup gn is A\B(R)-measurable. Warning: Be careful about
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strict inequalities that turn into nonstrict inequalities in the limit—it is possible to
have xn > x for all n and still have lim supn xn = x .

[5] Suppose a class of sets E cannot separate a particular pair of points x , y: for every E
in E, either {x, y} ⊆ E or {x, y} ⊆ Ec. Show that σ(E) also cannot separate the pair.

[6] A collection of sets F0 that is stable under finite unions, finite intersections, and
complements is called a field. A nonnegative set function µ defined on F0 is called
a finitely additive measure if µ

(∪i≤n Fi
) = ∑

i≤n µFi for every finite collection
of disjoint sets in F0. The set function is said to be countably additive on F0 if
µ (∪i∈N Fi ) = ∑

i∈N µFi for every countable collection of disjoint sets in F0 whose
union belongs to F. Suppose µX < ∞. Show that µ is countably additive on F0 if
and only if µAn ↓ 0 for every decreasing sequence in F0 with empty intersection.
Hint: For the argument in one direction, consider the union of differences Ai\Ai+1.

[7] Let f1, . . . , fn be functions in M+(X,A), and let µ be a measure on A. Show that
µ (∨i fi ) ≤ ∑

i µ fi ≤ µ (∨i fi )+∑
i< j µ

(
fi ∧ f j

)
where ∨ denotes pointwise maxima

of functions and ∧ denotes pointwise minima.

[8] Let µ be a finite measure and f be a measurable function. For each positive
integer k, show that µ| f |k < ∞ if and only if

∑∞
n=1 nk−1µ{| f | ≥ n} < ∞.

[9] Suppose ν := T µ, the image of the measure µ under the measurable map T . Show
that f ∈ L1(ν) if and only if f ◦ T ∈ L1(µ), in which case ν f = µ ( f ◦ T ).

[10] Let {hn}, { fn}, and {gn} be sequences of µ-integrable functions that converge µ

almost everywhere to limits h, f and g. Suppose hn(x) ≤ fn(x) ≤ gn(x) for all x .
Suppose also that µhn → µh and µgn → µg. Adapt the proof of Dominated
Convergence to prove that µ fn → µ f .

[11] A collection of sets is called a monotone class if it is stable under unions of
increasing sequences and intersections of decreasing sequences. Adapt the argument
from Theorem <38> to prove: if a class E is stable under finite unions and
complements then σ(E) equals the smallest monotone class containing E.

[12] Let µ be a finite measure on the Borel sigma-field B(X) of a metric space X. Call
a set B inner regular if µB = sup{µF : B ⊇ F closed } and outer regular if
µB = inf{µF : B ⊆ G open }

(i) Prove that the class B0 of all Borel sets that are both inner and outer regular is
a sigma-field. Deduce that every Borel set is inner regular.

(ii) Suppose µ is tight: for each ε > 0 there exists a compact Kε such that
µK c

ε < ε. Show that the F in the definition of inner regularity can then be
assumed compact.

(iii) When µ is tight, show that there exists a sequence of disjoint compacts subsets
{Ki : i ∈ N} of X such that µ (∪i Ki )

c = 0.

[13] Let µ be a finite measure on the Borel sigma-field of a complete, separable metric
space X. Show that µ is tight: for each ε > 0 there exists a compact Kε such that
µK c

ε < ε. Hint: For each positive integer n, show that the space X is a countable
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union of closed balls with radius 1/n. Find a finite family of such balls whose
union Bn has µ measure greater than µX − ε/2n . Show that ∩n Bn is compact, using
the total-boundedness characterization of compact subsets of complete metric spaces.

[14] A sequence of random variables {Xn} is said to converge in probability to a random

variable X , written Xn
P−→ X , if P{|Xn − X | > ε} → 0 for each ε > 0.

(i) If Xn → X almost surely, show that 1 ≥ {|Xn − X | > ε} → 0 almost surely.
Deduce via Dominated Convergence that Xn converges in probability to X .

(ii) Give an example of a sequence {Xn} that converges to X in probability but not
almost surely.

(iii) Suppose Xn → X in probability. Show that there is an increasing sequence of
positive integers {n(k)} for which

∑
k P{|Xn(k) − X | > 1/k} < ∞. Deduce that

Xn(k) → X almost surely.

[15] Let f and g be measurable functions on (X,A, µ), and r and s be positive real
numbers for which r−1 + s−1 = 1. Show that µ| f g| ≤ (µ| f |r )1/r (µ|g|s)1/s by
arguing as follows. First dispose of the trivial case where one of the factors on
the righthand side is 0 or ∞. Then, without loss of generality (why?), assume
that µ| f |r = 1 = µ|g|s . Use concavity of the logarithm function to show that
| f g| ≤ | f |r/r + |g|s/s, and then integrate with respect to µ. This result is called the
Hölder inequality.

[16] Generalize the Hölder inequality (Problem [15]) to more than two measurable
functions f1, . . . , fk , and positive real numbers r1, . . . , rk for which

∑
i r−1

i = 1.
Show that µ| f1 . . . fk | ≤ ∏

i (µ| fi |ri )1/ri .

[17] Let (X,A, µ) be a measure space, f and g be measurable functions, and r be a
real number with r ≥ 1. Define ‖ f ‖r = (µ| f |r )1/r . Follow these steps to prove
Minkowski’s inequality: ‖ f + g‖r ≤ ‖ f ‖r + ‖g‖r .

(i) From the inequality |x + y|r ≤ |2x |r + |2y|r deduce that ‖ f + g‖r < ∞ if
‖ f ‖r < ∞ and ‖g‖r < ∞.

(ii) Dispose of trivial cases, such as ‖ f ‖r = 0 or ‖ f ‖r = ∞.

(iii) For arbitrary positive constants c and d argue by convexity that( | f | + |g|
c + d

)r

≤ c

c + d

( | f |
c

)r

+ d

c + d

( |g|
d

)r

(iv) Integrate, then choose c = ‖ f ‖r and d = ‖g‖r to complete the proof.

[18] For f in L1(µ) define ‖ f ‖1 = µ| f |. Let { fn} be a Cauchy sequence in L1(µ), that
is, ‖ fn − fm‖1 → 0 as min(m, n) → ∞. Show that there exists an f in L1(µ) for
which ‖ fn − f ‖1 → 0, by following these steps.

(i) Find an increasing sequence {n(k)} such that
∑∞

k=1 ‖ fn(k) − fn(k+1)‖1 < ∞.
Deduce that the function H := ∑∞

k=1 | fn(k) − fn(k+1)| is integrable.

(ii) Show that there exists a real-valued, measurable function f for which

H ≥ | fn(k)(x) − f (x)| → 0 as k → ∞, for µ almost all x .
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Deduce that ‖ fn(k) − f ‖1 → 0 as k → ∞.

(iii) Show that f belongs to L1(µ) and ‖ fn − f ‖1 → 0 as n → ∞.

[19] Let { fn} be a Cauchy sequence in Lp(X,A, µ), that is, ‖ fn − fm‖p → 0 as
min(m, n) → ∞. Show that there exists a function f in Lp(X,A, µ) for which
‖ fn − f ‖p → 0, by following these steps.

(i) Find an increasing sequence {n(k)} such that C := ∑∞
k=1 ‖ fn(k) − fn(k+1)‖p < ∞.

Define H∞ = limN→∞ HN , where HN = ∑N
k=1 | fn(k) − fn(k+1)| for 1 ≤ N < ∞.

Use the triangle inequality to show that µH p
N ≤ C p for all finite N . Then use

Monotone Convergence to deduce that µH p
∞ ≤ C p.

(ii) Show that there exists a real-valued, measurable function f for which fn(k)(x) →
f (x) as k → ∞, a.e. [µ].

(iii) Show that | fn(k) − f | ≤ ∑∞
i=k | fn(i) − fn(i+1)| ≤ H∞ a.e. [µ]. Use Dominated

Convergence to deduce that ‖ fn(k) − f ‖p → 0 as k → ∞.

(iv) Deduce from (iii) that f belongs to Lp(X,A, µ) and ‖ fn − f ‖p → 0 as n → ∞.

[20] For each random variable on a probability space (	, F, P) define

‖X‖∞ := inf{c ∈ [0, ∞] : |X | ≤ c almost surely}.
Let L∞ := L∞ (	, F, P) denote the set of equivalence classes of real-valued random
variables with ‖X‖∞ < ∞. Show that ‖ · ‖∞ is a norm on L∞, which is a vector
space, complete under the metric defined by ‖X‖∞.

[21] Let {Xt : t ∈ T } be a collection of R-valued random variables with possibly
uncountable index set T . Complete the following argument to show that there exists
a countable subset T0 of T such that the random variable X = supt∈T0

Xt has the
properties

(a) X ≥ Xt almost surely, for each t ∈ T

(b) if Y ≥ Xt almost surely, for each t ∈ T , then Y ≥ X almost surely

(The random variable X is called the essential supremum of the family. It is denoted
by ess supt∈T Xt . Part (b) shows that it is, unique up to an almost sure equivalence.)

(i) Show that properties (a) and (b) are unaffected by a monotone, one-to-one
transformation such as x �→ x/(1 + |x |). Deduce that there is no loss of
generality in assuming |Xt | ≤ 1 for all t .

(ii) Let δ = sup{P supt∈S Xt : countable S ⊆ T }. Choose countable Tn such that
P supt∈Tn

Xt ≥ δ − 1/n. Let T0 = ∪nTn . Show that P supt∈T0
Xt = δ.

(iii) Suppose t /∈ T0. From the inequality δ ≥ P (Xt ∨ X) ≥ PX = δ deduce that
X ≥ Xt almost surely.

(iv) For a Y as in assertion (b), show that Y ≥ supt∈T0
Xt = X almost surely.

[22] Let � be a convex, increasing function for which �(0) = 0 and �(x) → ∞ as
x → ∞. (For example, �(x) could equal x p for some fixed p ≥ 1, or exp(x) − 1
or exp(x2) − 1.) Define L�(X,A, µ) to be the set of all real-valued measurable
functions on X for which µ�(| f |/c0) < ∞ for some positive real c0. Define
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‖ f ‖� := inf{c > 0 : µ�(| f |/c) ≤ 1}, with the convention that the infimum of an
empty set equals +∞. For each f , g in L�(X,A, µ) and each real t prove the
following assertions.

(i) ‖ f ‖� < ∞. Hint: Apply Dominated Convergence to µ�(| f |/c).

(ii) f +g ∈ L�(X,A, µ) and the triangle inequality holds: ‖ f +g‖� ≤ ‖ f ‖� +‖g‖� .
Hint: If c > ‖ f ‖� and d > ‖g‖� , deduce that

�

( | f + g|
c + d

)
≤ c

c + d
�

( | f |
c

)
+ d

c + d
�

( |g|
d

)
,

by convexity of �.

(iii) t f ∈ L�(X,A, µ) and ‖t f ‖� = |t | ‖ f ‖� .

Remark. ‖ · ‖� is called an Orlicz “norm”—to make it a true norm one should
work with equivalence classes of functions equal µ almost everywhere. The L p

norms correspond to the special case �(x) = x p , for some p ≥ 1.

[23] Define ‖ f ‖� and L� as in Problem [22]. Let { fn} be a Cauchy sequence in L�(µ),
that is, ‖ fn − fm‖� → 0 as min(m, n) → ∞. Show that there exists an f in L�(µ)

for which ‖ fn − f ‖� → 0, by following these steps.

(i) Let {gi } be a nonnegative sequence in L�(µ) for which C := ∑
i ‖gi‖� < ∞.

Show that the function G := ∑
i gi is finite almost everywhere and ‖G‖� ≤∑

i ‖gi‖� < ∞. Hint: Use Problem [22] to show that P�
(∑

i≤n gi/C
) ≤ 1 for

each n, then justify a passage to the limit.

(ii) Find an increasing sequence {n(k)} such that
∑∞

k=1 ‖ fn(k) − fn(k+1)‖� < ∞.
Deduce that the functions HL := ∑∞

k=L | fn(k) − fn(k+1)| satisfy

∞ > ‖H1‖� ≥ ‖H2‖� ≥ . . . → 0.

(iii) Show that there exists a real-valued, measurable function f for which

| fn(k)(x) − f (x)| → 0 as k → ∞, for µ almost all x .

(iv) Given ε > 0, choose L so that ‖HL‖� < ε. For i > L, show that

� (HL/ε) ≥ �
(| fn(L) − fn(i)|/ε

) → �
(| fn(L) − f |/ε) .

Deduce that ‖ fn(L) − f ‖� ≤ ε.

(v) Show that f belongs to L�(µ) and ‖ fn − f ‖� → 0 as n → ∞.

[24] Let � be a convex increasing function with �(0) = 0, as in Problem [22]. Let �−1

denote its inverse function. If X1, . . . , X N ∈ L�(X,A, µ), show that

P max
i≤N

|Xi | ≤ �−1(N ) max
i≤N

‖Xi‖�.

Hint: Consider �(P max |X I |/C) with C > maxi≤N ‖Xi‖� .

Remark. Compare with van der Vaart & Wellner (1996, page 96): if
also lim supx,y→∞ �(x)�(y)/�(cxy) < ∞ for some constant c > 0 then
‖ maxi≤N |Xi |‖� ≤ K�−1(N ) maxi≤N ‖Xi‖� for a constant K depending only on �.
See page 105 of their Problems and Complements for related counterexamples.
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[25] For each θ in [0, 1] let Xn,θ be a random variable with a Binomial(n, θ) distribution.
That is, P{Xn,θ = k} = (n

k

)
θ k(1 − θ)n−k for k = 0, 1, . . . , n. You may assume these

elementary facts: PXn,θ = nθ and P(Xn,θ − nθ)2 = nθ(1 − θ). Let f be a continuous
function defined on [0, 1].

(i) Show that pn(θ) = P f (Xn,θ /n) is a polynomial in θ .

(ii) Suppose | f | ≤ M , for a constant M . For a fixed ε, invoke (uniform) continuity
to find a δ > 0 such that | f (s) − f (t)| ≤ ε whenever |s − t | ≤ δ, for all s, t
in [0, 1]. Show that

| f (x/n) − f (θ)| ≤ ε + 2M{ |(x/n) − θ | > δ} ≤ ε + 2M |(x/n) − θ |2
δ2

.

(iii) Deduce that sup0≤θ≤1 |pn(θ) − f (θ)| < 2ε for n large enough. That is, deduce
that f (·) can be uniformly approximated by polynomials over the range [0, 1],
a result known as the Weierstrass approximation theorem.

[26] Extend the approximation result from Example <46> to the case of an infinite
measure µ on B(Rk) that gives finite measure to each compact set. Hint: Let B
be a closed ball of radius large enough to ensure µ| f |B < ε. Write µB for the
restriction of µ to B. Invoke the result from the Example to find a g in C0 such
that µB | f − g| < ε. Find C0 functions 1 ≥ hi ↓ B. Consider approximations ghi

for i large enough.

13. Notes

I recommend Royden (1968) as a good source for measure theory. The books of
Ash (1972) and Dudley (1989) are also excellent references, for both measure theory
and probability. Dudley’s book contains particularly interesting historical notes.

See Hawkins (1979, Chapter 4) to appreciate the subtlety of the idea of a
negligible set.

The result from Problem [10] is often attributed to (Pratt 1960), but, as he noted
(in his 1966 Acknowledgment of Priority), it is actually much older.

Theorem <38> (the π–λ theorem for generating classes of sets) is often
attributed to Dynkin (1960, Section 1.1), although Sierpiński (1928) had earlier
proved a slightly stronger result (covering generation of sigma-rings, not just sigma-
fields). I adapted the analogous result for classes of functions, Theorem <45>, from
Protter (1990, page 7) and Dellacherie & Meyer (1978, page 14). Compare with
the “Sierpiński Stability Lemma” for sets, and the “Functional Sierpiński Lemma”
presented by Hoffmann-Jørgensen (1994, pages 8, 54, 60).
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