Convergent subsequences

1	Complete metric spaces	1
2	Cauchy sequences in measure	2
3	Completeness of \mathcal{L}^1	3

1 Complete metric spaces

A metric space (M, d) is said to be complete if every Cauchy sequence is convergent to a point in the space. Remember that $\{m_i : i \in \mathbb{N}\}$ is a Cauchy sequence in M if for each $\delta > 0$ there exists an $n_{\delta} \in \mathbb{N}$ for which

$$d(m_i, m_j) < \delta$$
 for all $i, j \ge n_\delta$.

The prime example of a complete metric space is the real line, under its usual metric.

Notice that $\langle 1 \rangle$ refers to all pairs i, j with $\min(i, j) \geq n_{\delta}$, not just pairs with j = i + 1.

The \mathcal{L}^p spaces defined in UGMTP Section 2.7 are also complete under the metric defined by the norm $\|\cdot\|_p$. For example, if $\{f_i : i \in \mathbb{N}\} \subset \mathcal{L}^1(\mathcal{X}, \mathcal{A}, \mu)$ and, for each $\delta > 0$

$$\|f_i - f_j\|_1 < \delta$$
 for $\min(i, j) \ge n_\delta$

then there exists an f in $\mathcal{L}^1(\mathcal{X}, \mathcal{A}, \mu)$ for which $\|f_i - f\|_1 \to 0$ as $i \to \infty$.

Remark. Technically speaking, $\mathcal{L}^{1}(\mathcal{X}, \mathcal{A}, \mu)$ is only a semi-metric space and $\|\cdot\|_{1}$ is only a semi-norm, because $\|f\|_{1} = 0$ implies not that f is everywhere zero but rather that f is zero μ -almost everywhere. The technical fix is to work with the set $L^{1}(\mathcal{X}, \mathcal{A}, \mu)$ of μ -equivalence classes of functions from $\mathcal{L}^{1}(\mathcal{X}, \mathcal{A}, \mu)$.

The proofs given in UGMPTP Problems 2.18, 2.19, and 2.22 can be simplified by means of an extension of Problem 2.14 to general measures, which appears in the next Section.

 $<\!\!2\!\!>$

2 Cauchy sequences in measure

Suppose $\{f_n : n \in \mathbb{N}\}\$ is a sequence of real-valued $\mathcal{B}(\mathcal{R})$ -measurable functions on a measure space $(\mathcal{X}, \mathcal{A}, \mu)$ for which: for each $\epsilon > 0$ and $\delta > 0$ there exists an $n_{\epsilon,\delta}$ for which

 $<\!\!3\!\!>$

$$\mu\{x: |f_n(x) - f_m(x)| > \delta\} < \epsilon \qquad \text{whenever } m, n \ge n_{\epsilon,\delta}.$$

Then there exists a subsequence $\{f_{n(k)} : k \in \mathbb{N}\}\$ and a real-valued $\mathcal{A}\setminus\mathcal{B}(\mathbb{R})$ -measurable function f for which

 $f_{n(k)}(x) \to f(x)$ as $k \to \infty$, for μ -almost all x in \mathfrak{X} .

Remark. A sequence satisfying <3> is sometimes said to be a Cauchy sequence in measure.

PROOF Write n(k) for the $n_{\epsilon,\delta}$ corresponding to $\epsilon = \delta = 2^{-k}$, for $k \in \mathbb{N}$. You will see soon why I need both the δ and ϵ sequences to be summable.

We may assume that $n(1) < n(2) < \ldots$, to avoid trivial situations such as $f_n(x) = 0$ for all x and n, in which case we could have $n(\delta, \epsilon) = 1$ for all $\delta > 0$ and $\epsilon > 0$.

Remark. More formally we could define n(1) = n(1/2, 1/2) then $n(2) = \max(1 + n(1), n(1/4, 1/4))$, and so on. Very fussy.

By construction,

$$\mu\{|f_i(x) - f_j(x)| > 2^{-k}\} \le 2^{-k} \quad \text{when } \min(i, j) \ge n(k).$$

In particular,

$$\mu\{|f_{n(k)}(x) - f_{n(k+1)}(x)| > 2^{-k}\} \le 2^{-k}.$$

Thus

$$\sum_{k \in \mathbb{N}} \widetilde{\mu} \mathbb{1}\{x : |f_{n(k)}(x) - f_{n(k+1)}(x)| > 2^{-k}\} \le \sum_{k \in \mathbb{N}} 2^{-k} < \infty.$$

That is the reason for choosing a summable ϵ sequence.

By Monotone Convergence we can move the $\tilde{\mu}$ outside the summation then deduce existence of a μ -negligible set N for which

$$\sum_{k \in \mathbb{N}} \mathbb{1}\{x : |f_{n(k)}(x) - f_{n(k+1)}(x)| > 2^{-k}\} < \infty \quad \text{for all } x \text{ in } N^c$$

For each x in N^c only finitely many of the indicator functions can take the value 1. Of course the number of such terms can be different for every x. That is, for each x in N^c there exists a $k_0(x) \in \mathbb{N}$ for which

$$|f_{n(k)}(x) - f_{n(k+1)}(x)| \le 2^{-k}$$
 for all $k \ge k_0(x)$.

Remark. Note that we have no reason to hope $\sup_{x \in N^c} k_0(x)$ is also finite. I often find such an assertion in homework solutions.

To simplify notation let me write $g_k(x)$ for $f_{n(k)}(x)$. Then for each x in N^c and all i and j with $k_0(x) \leq i < j$ we have

$$|g_i(x) - g_j(x)| = |\sum_{k=i}^{j-1} g_k(x) - g_{k+1}(x)|$$

$$\leq \sum_{k=i}^{j-1} |g_k(x) - g_{k+1}(x)|$$

$$\leq \sum_{k=i}^{j-1} 2^{-k} < 2^{1-i}.$$

For each $\delta > 0$ we have $|g_i(x) - g_j(x)| < \delta$ if $\min(i, j)$ is large enough. That is, for each $x \in N^c$ the real numbers $\{g_k(x) : k \in \mathbb{N}\}$ form a Cauchy sequence.

By completeness of the real line, for each x in N^c we know that $g_k(x)$ converges to some real number f(x). For x in N we know nothing, so it is perhaps wise to define f(x) = 0 if $x \in N$. The function f is then defined everywhere and, by virtue of the equality

$$f(x) = \limsup_k \left(g_k(x) \mathbb{1}\{x \in N^c\} \right) \quad \text{for each } x,$$

it is $\mathcal{A}\setminus\mathcal{B}(\mathbb{R})$ -measurable. The limsup is actually a limit on N^c . We have

$$f_{n(k)}(x) = g_k(x) \to f(x)$$
 a.e. $[\mu]$

3 Completeness of \mathcal{L}^1

As in <2>, suppose $\{f_i : i \in \mathbb{N}\} \subset \mathcal{L}^1(\mathcal{X}, \mathcal{A}, \mu)$ and, for each $\delta > 0$

$$\|f_i - f_j\|_1 < \delta \qquad \text{for } \min(i, j) \ge n_\delta.$$

Given $\gamma > 0$ and $\epsilon > 0$ we have

$$\mu\{|f_i - f_j| > \delta\} \le \mu |f_i - f_j| / \delta < \epsilon \quad \text{if } \min(i, j) \ge n_\gamma \text{ with } \gamma = \epsilon \delta.$$

That is, the sequence is also Cauchy in measure, in the sense defined by $\langle 3 \rangle$.

From Section 2, there exists a real-valued, $\mathcal{A}\setminus\mathcal{B}(\mathbb{R})$ -measurable function f for which there is a subsequence with

$$f_{n(k)} \to f$$
 a.e. $[\mu]$ as $k \to \infty$.

We also have

$$\delta > \widetilde{\mu}|f_n - f_{n(k)}|$$
 provided $n, n(k) \ge n_{\delta}$.

With n held fixed let k tend to infinity. By Fatou, for $n \ge n_{\delta}$,

$$\delta \ge \liminf_{k \to \infty} \widetilde{\mu} |f_n - f_{n(k)}| \ge \widetilde{\mu} \liminf_{k \to \infty} |f_n - f_{n(k)}| = \widetilde{\mu} |f_n - f|$$

because $|f_n - f_{n(k)}| \to 0$ a.e. $[\mu]$. The function f belongs to $\mathcal{L}^1(\mathfrak{X}, \mathcal{A}, \mu)$ because $\widetilde{\mu}|f| \leq \widetilde{\mu}|f_n - f| + \widetilde{\mu}|f_n|$.