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1 Complete metric spaces

A metric space (M,d) is said to be complete if every Cauchy sequence is
convergent to a point in the space. Remember that {mi : i ∈ N} is a Cauchy
sequence in M if for each δ > 0 there exists an nδ ∈ N for which

<1> d(mi,mj) < δ for all i, j ≥ nδ.

The prime example of a complete metric space is the real line, under its
usual metric.

Notice that <1> refers to all pairs i, j with min(i, j) ≥ nδ, not just pairs
with j = i+ 1.

The Lp spaces defined in UGMTP Section 2.7 are also complete under the
metric defined by the norm ‖·‖p. For example, if {fi : i ∈ N} ⊂ L1(X,A, µ)
and, for each δ > 0

<2> ‖fi − fj‖1 < δ for min(i, j) ≥ nδ
then there exists an f in L1(X,A, µ) for which ‖fi − f‖1 → 0 as i→∞.

Remark. Technically speaking, L1(X,A, µ) is only a semi-metric space
and ‖·‖1 is only a semi-norm, because ‖f‖1 = 0 implies not that f is
everywhere zero but rather that f is zero µ-almost everywhere. The
technical fix is to work with the set L1(X,A, µ) of µ-equivalence classes
of functions from L1(X,A, µ).

The proofs given in UGMPTP Problems 2.18, 2.19, and 2.22 can be
simplified by means of an extension of Problem 2.14 to general measures,
which appears in the next Section.

version: 31 Jan 2018
printed: 1 February 2018

Convergence in measure
c©David Pollard



§2 Cauchy sequences in measure 2

2 Cauchy sequences in measure

Suppose {fn : n ∈ N} is a sequence of real-valued B(R)-measurable functions
on a measure space (X,A, µ) for which: for each ε > 0 and δ > 0 there exists
an nε,δ for which

<3> µ{x : |fn(x)− fm(x)| > δ} < ε whenever m,n ≥ nε,δ.

Then there exists a subsequence {fn(k) : k ∈ N} and a real-valued A\B(R)-
measurable function f for which

fn(k)(x)→ f(x) as k →∞, for µ-almost all x in X.

Remark. A sequence satisfying <3> is sometimes said to be a Cauchy
sequence in measure.

Proof Write n(k) for the nε,δ corresponding to ε = δ = 2−k, for k ∈ N.
You will see soon why I need both the δ and ε sequences to be summable.

We may assume that n(1) < n(2) < . . . , to avoid trivial situations such
as fn(x) = 0 for all x and n, in which case we could have n(δ, ε) = 1 for
all δ > 0 and ε > 0.

Remark. More formally we could define n(1) = n(1/2, 1/2) then
n(2) = max(1 + n(1), n(1/4, 1/4), and so on. Very fussy.

By construction,

µ{|fi(x)− fj(x)| > 2−k} ≤ 2−k when min(i, j) ≥ n(k).

In particular,

µ{|fn(k)(x)− fn(k+1)(x)| > 2−k} ≤ 2−k.

Thus ∑
k∈N

µ̃1{x : |fn(k)(x)− fn(k+1)(x)| > 2−k} ≤
∑

k∈N
2−k <∞.

That is the reason for choosing a summable ε sequence.
By Monotone Convergence we can move the µ̃ outside the summation

then deduce existence of a µ-negligible set N for which∑
k∈N

1{x : |fn(k)(x)− fn(k+1)(x)| > 2−k} <∞ for all x in N c.

For each x in N c only finitely many of the indicator functions can take the
value 1. Of course the number of such terms can be different for every x.
That is, for each x in N c there exists a k0(x) ∈ N for which

|fn(k)(x)− fn(k+1)(x)| ≤ 2−k for all k ≥ k0(x).
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Remark. Note that we have no reason to hope supx∈Nc k0(x) is also
finite. I often find such an assertion in homework solutions.

To simplify notation let me write gk(x) for fn(k)(x). Then for each x
in N c and all i and j with k0(x) ≤ i < j we have

|gi(x)− gj(x)| = |
∑j−1

k=i
gk(x)− gk+1(x)|

≤
∑j−1

k=i
|gk(x)− gk+1(x)|

≤
∑j−1

k=i
2−k < 21−i.

For each δ > 0 we have |gi(x) − gj(x)| < δ if min(i, j) is large enough.
That is, for each x ∈ N c the real numbers {gk(x) : k ∈ N} form a Cauchy
sequence.

By completeness of the real line, for each x in N c we know that gk(x)
converges to some real number f(x). For x in N we know nothing, so it is
perhaps wise to define f(x) = 0 if x ∈ N . The function f is then defined
everywhere and, by virtue of the equality

f(x) = lim supk (gk(x)1{x ∈ N c}) for each x,

it is A\B(R)-measurable. The limsup is actually a limit on N c. We have

fn(k)(x) = gk(x)→ f(x) a.e. [µ].

�

3 Completeness of L1

As in <2>, suppose {fi : i ∈ N} ⊂ L1(X,A, µ) and, for each δ > 0

‖fi − fj‖1 < δ for min(i, j) ≥ nδ.

Given γ > 0 and ε > 0 we have

µ{|fi − fj | > δ} ≤ µ|fi − fj |/δ < ε if min(i, j) ≥ nγ with γ = εδ.

That is, the sequence is also Cauchy in measure, in the sense defined by <3>.
From Section 2, there exists a real-valued, A\B(R)-measurable func-

tion f for which there is a subsequence with

fn(k) → f a.e. [µ] as k →∞.
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We also have

δ > µ̃|fn − fn(k)| provided n, n(k) ≥ nδ.

With n held fixed let k tend to infinity. By Fatou, for n ≥ nδ,

δ ≥ lim inf
k→∞

µ̃|fn − fn(k)| ≥ µ̃ lim inf
k→∞

|fn − fn(k)| = µ̃|fn − f |

because |fn − fn(k)| → 0 a.e. [µ]. The function f belongs to L1(X,A, µ)
because µ̃|f | ≤ µ̃|fn − f |+ µ̃|fn|.
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