Due: Thursday 25 January

Please attempt at least the starred problems. Please explain your reasoning. Please look at the handout <u>latex.pdf</u> for an explanation of why solutions consisting of a long sequence of  $\therefore$ 's and  $\because$ 's can be hard to follow.

\*[1] Suppose T maps a set  $\mathfrak{X}$  into a set  $\mathfrak{Y}$ . For each  $B \subseteq \mathfrak{Y}$  and  $A \subseteq \mathfrak{X}$  define  $T^{-1}B := \{x \in \mathfrak{X} : T(x) \in B\}$  and  $T(A) := \{T(x) : x \in A\}$ . In class I asserted that

$$(i) \quad T^{-1} (\cup_i B_i) = \cup_i T^{-1}(B_i)$$

$$(ii) \quad T^{-1}\left(\cap_i B_i\right) = \cap_i T^{-1}(B_i)$$

$$(iii) \quad T^{-1}\left(B^c\right) = \left(T^{-1}\left(B\right)\right)^c$$

In my experience, many students also believe that

(i) 
$$T(\cup_i A_i) = \cup_i T(A_i)$$

$$(ii)$$
  $T(\cap_i A_i) = \cap_i T(A_i)$ 

$$(iii) \quad T(A^c) = (T(A))^c$$

$$(iv) \quad T^{-1}\left(T(A)\right) = A$$

$$(v) \quad T\left(T^{-1}(B)\right) = B.$$

In general, some of these assertions are false. Provide counterexamples for each of the false assertions. Maybe you could also give extra conditions under which the assertions are true. (Hint: All the counterexamples can be constructed using the special case shown in the picture.)



$$\mathcal{E} = \{ A_1 \times A_2 : A_1 \in \mathcal{A}_1 \text{ and } A_2 \in \mathcal{A}_2 \}.$$

Suppose also that  $\mathcal{A}_i = \sigma(\mathcal{E}_i)$  with  $\mathfrak{X}_i \in \mathcal{E}_i$ , for each i. Follow these steps to show that  $\mathcal{A}_1 \otimes \mathcal{A}_2$  is also generated by  $\mathfrak{F} = \{E_1 \times E_2 : E_1 \in \mathcal{E}_1 \text{ and } E_2 \in \mathcal{E}_2\}$ . Note that  $\mathfrak{F} \subseteq \mathcal{E}$ .

- (i) Define  $\mathcal{B} = \{B \in \mathcal{A}_1 : B \times \mathcal{X}_2 \in \sigma(\mathcal{F})\}$ . Show that  $\mathcal{B}$  is a sigma-field with  $\mathcal{B} \supseteq \mathcal{E}_1$ . Deduce that  $A_1 \times \mathcal{X}_2 \in \sigma(\mathcal{F})$  for each  $A_1 \in \mathcal{A}_1$ .
- (ii) Similarly (no need for proof), we have  $\mathcal{X}_1 \times A_2 \in \sigma(\mathcal{F})$  for each  $A_2 \in \mathcal{A}_2$ . Show that  $\mathcal{E} \subseteq \sigma(\mathcal{F})$ .
- (iii) Complete the argument.
- \*[3] Suppose  $\mathcal{X}_1$  and  $\mathcal{X}_2$  are metric spaces (or just topological spaces) equipped with their Borel sigma-fields:  $\mathcal{B}(\mathcal{X}_i) = \sigma(\mathcal{G}_i)$ , where  $\mathcal{G}_i$  is the set of all open subsets of  $\mathcal{X}_i$ . By definition, the open subsets of  $\mathcal{X}_1 \times \mathcal{X}_2$  are obtained by taking arbitrary unions of sets of the form  $G_1 \times G_2$  with  $G_i \in \mathcal{G}_i$ .
  - (i) Show that  $\mathcal{B}(\mathfrak{X}_1 \times \mathfrak{X}_2) \supseteq \mathcal{B}(\mathfrak{X}_1) \otimes \mathcal{B}(\mathfrak{X}_2)$ .
  - (ii) Show that  $\mathcal{B}(\mathbb{R}^2) = \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$ . Hint: Think about the collection of all open rectangles of the form  $(a_1, b_1) \times (a_2, b_2)$ , with rational  $a_1, b_1, a_2, b_2$ .



[4] Suppose f and g are both real-valued  $\mathcal{A}\setminus\mathcal{B}(\mathbb{R})$ -measurable functions defined on a set  $\mathcal{X}$  equipped with a sigma-field  $\mathcal{A}$ . Show that  $x\mapsto f(x)g(x)$  is also  $\mathcal{A}\setminus\mathcal{B}(\mathbb{R})$ -measurable by figuring out the meaning of the following diagram.

Here T(x)=(f(x),g(x)) and  $\psi(u,v)=uv$ . You may assume (without proof) that  $\psi$  is a continuous function.