S&DS 400b/600b, Math 330b, spring 2018 Homework # 12 Due: Thursday 26 April

*[1] Let A be a subset of a metric space (\mathfrak{X}, d) . For each x in \mathfrak{X} define

$$d(x,A) := \inf\{d(x,y) : y \in A\}.$$

(i) For each pair of points x_1 and x_2 in \mathfrak{X} , show that

$$|d(x_1, A) - d(x_2, A)| \le d(x_1, x_2).$$

(ii) Show that

$$\{x : d(x, A) = 0\} = \overline{A} := \text{closure of } A,$$
$$\{x : d(x, A^c) > 0\} = \mathring{A} := \text{interior of } A,$$

$$\{x: d(x, A) = 0 = d(x, A^c)\} = \overline{A} \setminus \overline{A} = \partial A =$$
boundary of A .

Hint: If d(x, A) = 0, there exists points $x_n \in A$ with $d(x, x_n) \to 0$.

- [2] Suppose f_1 and f_2 are real valued functions on a metric space (\mathfrak{X}, d) .
 - (i) If both functions are Lipschitz, with $||f_i||_{\text{Lip}} = \alpha_i$, and $f(x) := \max(f_1(x), f_2(x))$ for each x, show that $||f||_{\text{Lip}} \le \max(\alpha_1, a_2)$. Hint: If $d(x, y) = \delta$, show that

$$f(x) \le \max\left(f_1(y) + \alpha_1 \delta, f_2(y) + \alpha_2 \delta\right).$$

- (ii) If both functions belong to $BL(\mathcal{X})$, with $\|f_i\|_{BL} = \beta_i$, prove that $\|f_1 f_2\|_{BL} \le 2\beta_1 \beta_2$.
- *[3] Suppose P, P_1, P_2, \ldots are probability measures on the Borel sigma-field $\mathcal{B}(\mathfrak{X})$ of a metric space (\mathfrak{X}, d) for which

 $P_n B \to PB$ for each $B \in \mathcal{B}(\mathfrak{X})$ for which $P(\partial B) = 0$.

Let f be a bounded $\mathcal{B}(\mathcal{X})$ -measurable function from \mathcal{X} to [0,1] that is continuous at all points of \mathcal{X} except those of a P-negligible set \mathcal{N} .

- (i) For each t in [0, 1], show that the boundary of the set $B_t := \{f \ge t\}$ is contained in $\mathbb{N} \cup \{f = t\}$. Hint: If $x \in \partial B_t \setminus \mathbb{N}$ there exist sequences $x_n \to x$ and $y_n \to x$ with $x_n \in B_t$ and $y_n \in B_t^c$.
- (ii) Deduce that $P(\partial B_t) > 0$ for at most countably many values of t.
- (iii) Show that $P_n f = \int_0^1 P_n \{x : f(x) \ge t\} dt \to P f$.
- *[4] Suppose K is a continuously differentiable function on \mathbb{R} which is zero outside some bounded interval and for which $\int_{\mathbb{R}} K(x) dx = 1$. For a given bounded measurable function f on \mathbb{R} and each $\sigma > 0$ define

$$f_{\sigma}(x) := \int_{\mathbb{R}} f(x + \sigma y) K(y) \, dy = \frac{1}{\sigma} \int_{\mathbb{R}} f(z) K\left(\frac{z - x}{\sigma}\right) \, dz.$$

- (i) If $f \in BL(\mathfrak{X})$ with $||f||_{BL} = C$ show that $|f_{\sigma}(x) f(x)| \leq C\sigma \int_{\mathbb{R}} |yK(y)| \, dy$ for every x.
- (ii) Show (rigorously) that f_{σ} is differentiable with $\sigma f'_{\sigma}(x) = -\int f(x+\sigma y)K'(y)\,dy$.
- (iii) Explain why f_{σ} belongs to $\mathcal{C}^{\infty}(\mathbb{R})$ (= the set of all bounded real functions with bounded derivatives of all orders) if $K \in \mathcal{C}^{\infty}(\mathbb{R})$.
- [5] (Needed if you are interested in Fourier transforms, which use integrals of complex valued functions.) Suppose $f_1, f_2 \in \mathcal{L}^1(\mathcal{X}, \mathcal{A}, \mu)$. Show that

 $\mu|f_1(x) + if_2(x)| \ge |\mu(f_1) + i\mu(f_2)|.$

Hint: Define $F = \sqrt{f_1^2 + f_2^2}$ and $C = \mu F$. Show $C < \infty$. If $C \neq 0$ define P to be the probability measure with density F/C with respect to μ . Define $g_j = (f_j/F)\mathbb{1}\{F > 0\}$. What does Pg_j equal?