Statistics 330b/600b, Math 330b spring 2018

Homework # 2

Due: Thursday 1 February

Please attempt at least the starred problems. Please explain your reasoning. Keep looking at latex.pdf.

*[1] A set \mathcal{E} of subsets of \mathcal{X} is called a field if: it contains \emptyset and is stable under complements, finite unions, and finite intersections. Suppose μ is a finite measure (that is, $\mu \mathcal{X} < \infty$) on a sigma-field $\mathcal{A} = \sigma(\mathcal{E})$, where \mathcal{E} is a field of subsets of \mathcal{X} . Show that every A in \mathcal{A} has the following property:

(*): for each $\epsilon > 0$ there exists an $E \in \mathcal{E}$ for which $\mu(A\Delta E) < \epsilon$.

Remember that $A\Delta E := (A \cap E^c) \cup (A^c \cap E)$. Follow these steps.

(i) Explain why (\star) is equivalent to:

 $(\star\star)$: for each $\epsilon > 0$ there exists an $E \in \mathcal{E}$ for which $\widetilde{\mu}|\mathbb{1}_A - \mathbb{1}_E| < \epsilon$.

- (ii) Define $\mathcal{A}_0 := \{A \in \mathcal{A} : A \text{ has property } (\star \star)\}$. Show that $\mathcal{A}_0 \supseteq \mathcal{E}$.
- (iii) For all A and E show that $|\mathbb{1}_{A^c} \mathbb{1}_{E^c}| = |\mathbb{1}_A \mathbb{1}_E|$.
- (iv) Suppose $\{A_i : i \in \mathbb{N}\} \subset \mathcal{A}$ and $\{E_i : i \in \mathbb{N}\} \subset \mathcal{E}$. Define $A = \bigcup_{i \in \mathbb{N}} A_i$ and $D = \bigcup_{i \in \mathbb{N}} E_i$ and $D_n = \bigcup_{i \leq n} E_i$. Show that

$$\begin{aligned} |\mathbb{1}_A - \mathbb{1}_D| &\leq \sum_{i \in \mathbb{N}} |\mathbb{1}_{A_i} - \mathbb{1}_{E_i}| \\ |\mathbb{1}_D - \mathbb{1}_{D_n}| &\to 0 \qquad \text{pointwise as } n \to \infty. \end{aligned}$$

- (v) Deduce that \mathcal{A}_0 is a sigma-field then complete the argument.
- (vi) (optional extra) Show that the set \mathcal{H} of all finite linear combinations of the form $\sum_i \alpha_i \mathbb{1}_{E_i}$, with $\alpha \in \mathbb{R}$ and $E_i \in \mathcal{E}$, is dense (under $\|\cdot\|_1$) in $\mathcal{L}^1(\mathcal{X}, \mathcal{A}, \mu)$.
- *[2] Suppose $f_1, \ldots, f_k \in \mathcal{M}^+(\mathcal{X}, \mathcal{A})$ and $\theta_1, \ldots, \theta_k$ are strictly positive numbers that sum to one. Let μ be a measure on \mathcal{A} . Show that

<1>

$$\mu \prod_{i \le k} f_i^{\theta_i} \le \prod_{i \le k} (\mu f_i)^{\theta}$$

by following these steps. You may use the inequality

$$<\!\!2\!\!>$$

$$\prod_{i=1}^{k} a_i^{\theta_i} \le \sum_{i=1}^{k} \theta_i a_i \quad \text{for all } a_i \in [0, \infty),$$

which, as explained in class, is a simple consequence of the concavity of the log function.

- (i) Explain why inequality $\langle 1 \rangle$ is trivially true if $\mu f_i = 0$ for at least one *i*.
- (ii) Explain why inequality <1> is trivially true if $\mu f_i > 0$ for all i and $\mu f_i = +\infty$ for at least one i.
- (iii) Explain why there is no loss of generality in assuming that $\mu f_i = 1$ for each i and $f_i(x) < \infty$ for each x and i.
- (iv) Complete the proof by considering the inequality $\langle 2 \rangle$ with $a_i = f_i(x)$.

Remark. Textbooks often contain the the special case where k = 2 and $\theta_1 = 1/p$ and $\theta_2 = 1/q$ and $f_1 = |g_1|^p$ and $f_2 = |g_2|^q$, with the assertion that $|\mu(g_1g_2)| \le \mu |g_1g_2| \le (\mu |g_1|^p)^{1/p} (\mu |g_2|^q)^{1/q}$.

- [3] Suppose \mathcal{A} is a sigma-field on a set \mathfrak{X} and f is an $\mathcal{A}\backslash \mathcal{B}(\mathbb{R})$ -measurable function from \mathfrak{X} into \mathbb{R} . Suppose the function $g(x,\theta) = e^{\theta f(x)}$ belongs to $\mathcal{L}^1(\mathfrak{X},\mathcal{A},\mu)$ for each fixed real number θ in a (non-degenerate) interval $[-\delta,\delta]$. Define $M(\theta) = \tilde{\mu}e^{\theta f(x)}$ and $L(\theta) = \log M(\theta)$, for $-\delta \leq \theta \leq \delta$.
 - (i) Show that M is differentiable in the open interval $(-\delta, \delta)$, with derivative

$$M'(\theta) = \widetilde{\mu}(f e^{\theta f}).$$

(ii) Show that M' is differentiable in the open interval $(-\delta, \delta)$, with derivative

$$M''(\theta) = \widetilde{\mu}(f^2 e^{\theta f}).$$

(iii) For each θ in $[-\delta, \delta]$ define P_{θ} to be the (probability) measure defined to have density $e^{\theta f(x)}/M(\theta)$ with respect to μ . On the open interval $(-\delta, \delta)$ show that

$$L'(\theta) = P_{\theta} f$$

and

$$L''(\theta) = P_{\theta}(f^2) - (P_{\theta}f)^2 \ge 0$$

Hint: Think variance.

(iv) Deduce that L is a convex function, at least on the open interval $(-\delta, \delta)$.