Statistics 330b/600b, Math 330b spring 2018 Homework # 3 Due: Thursday 8 February

Please attempt at least the starred problems. [cf. $(\forall x \in \emptyset)(x \text{ is green})$.] Please explain your reasoning. Keep looking at latex.pdf.

- [1] Mimic the proof in the "Convergent subsequences" handout to prove that $\mathcal{L}^p(\mathfrak{X}, \mathcal{A}, \mu)$ is complete for $1 . If you are very brave you could also prove completeness of <math>\mathcal{L}^{\Psi}(\mathfrak{X}, \mathcal{A}, \mu)$ for each Orlicz space, simplifying the proof of UGMTP Problem 2.23. If you are less brave, prove completeness just for $\mathcal{L}^2(\mathfrak{X}, \mathcal{A}, \mu)$.
- [2] Let Ψ be a convex, increasing function for which $\Psi(0) = 0$ and $\Psi(x) \to \infty$ as $x \to \infty$. (For example, $\Psi(x)$ could equal x^p for some fixed $p \ge 1$, or $\exp(x) 1$ or $\exp(x^2) 1$.) Define $\mathcal{L}^{\Psi}(\mathcal{X}, \mathcal{A}, \mu)$ to be the set of all real-valued measurable functions on \mathcal{X} for which $\mu \Psi(|f|/c_0) < \infty$ for some positive real c_0 . Define $||f||_{\Psi} := \inf\{c > 0 : \mu \Psi(|f|/c) \le 1\}$, with the convention that the infimum of an empty set equals $+\infty$. For each f, g in \mathcal{L}^{Ψ} and each real t prove the following assertions.
 - (i) $||f||_{\Psi} < \infty$. Hint: Apply Dominated Convergence to $\mu \Psi(|f|/c)$.
 - (ii) $f + g \in \mathcal{L}^{\Psi}$ and the triangle inequality holds: $||f + g||_{\psi} \leq ||f||_{\psi} + ||g||_{\psi}$. Hint: If $c > ||f||_{\psi}$ and $d > ||g||_{\Psi}$, deduce that

$$\Psi\left(\frac{|f+g|}{c+d}\right) \leq \frac{c}{c+d}\Psi\left(\frac{|f|}{c}\right) + \frac{d}{c+d}\Psi\left(\frac{|g|}{d}\right),$$

by convexity of Ψ .

(iii) $tf \in \mathcal{L}^{\Psi}$ and $||tf||_{\psi} = |t| ||f||_{\psi}$.

Remark. $\|\cdot\|_{\psi}$ is called an Orlicz "norm"—to make it a true norm one should work with equivalence classes of functions equal μ almost everywhere. The L^p norms correspond to the special case $\Psi(x) = x^p$, for some $p \ge 1$.