Statistics 330b/600b, Math 330b spring 2018 Homework # 4 Due: Thursday 15 February

Please attempt at least the starred problems. Please explain your reasoning. Keep looking at latex.pdf. Please try to avoid strings of \therefore (???) \therefore (???) \therefore (???) \therefore (???) \therefore (???) \ldots They really can be hard to decipher.

*[1] Suppose $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space. Suppose also that two functions X_1, X_2 from $\mathcal{M}^+(\Omega, \mathcal{F})$ have the property that $\mathbb{P}(X_1 \mathbb{1}_F) = \mathbb{P}(X_2 \mathbb{1}_F)$ for all F in \mathcal{F} . Prove that $X_1 = X_2$ a.e. $[\mathbb{P}]$. Hint: Consider sets

$$F_{r,s} = \{ \omega \in \Omega : X_1(\omega) < r < s < X_2(\omega) \}.$$

*[2] Let $\{X_n : n \in \mathbb{N}\}$ be a sequence of (real-valued) random variables defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Suppose the sequence is Cauchy in probability, that is, for each $\epsilon > 0$ and $\delta > 0$ there exists an $n_{\epsilon,\delta}$ for which

$$\mathbb{P}\{\omega \in \Omega : |X_n(\omega) - X_m(\omega)| > \delta\} < \epsilon \qquad \text{whenever } \min(m, n) \ge n_{\epsilon, \delta}.$$

From the subsequence.pdf handout you know there exists a random variable X and a subsequence $\{n(k) : k \in \mathbb{N}\}$ for which

$$X_{n(k)}(\omega) \to X(\omega)$$
 a.e. $[\mathbb{P}]$ as $k \to \infty$.

- (i) Explain why $\mathbb{1}\{\omega : |X_{n(k)}(\omega) X(\omega)| > \delta\} \to 0$ a.e. $[\mathbb{P}]$ for each $\delta > 0$. Deduce that $X_{n(k)}$ converges in probability to X.
- (ii) Explain why

$$\mathbb{1}\{|X_n - X| > 2\delta\} \le \mathbb{1}\{|X_n - X_{n(k)}| > \delta\} + \mathbb{1}\{|X_{n(k)} - X| > \delta\}.$$

Deduce that X_n converges in probability to X as $n \to \infty$.

- *[3] Suppose $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space and $\{A_i : i \in \mathbb{N}\} \subset \mathcal{F}$. Define $S_n = \mathbb{1}_{A_1} + \dots + \mathbb{1}_{A_n}$ and $S_{\infty} = \sum_{i \in \mathbb{N}} \mathbb{1}_{A_i}$. In class I showed that $\mathbb{P}\{S_{\infty} \geq 1\} = 1$ if $\|S_n\|_1 \to \infty$ and $\|S_n\|_2 / \|S_n\|_1 \to 1$ as $n \to \infty$.
 - (i) Show that $\mathbb{P}\{S_{\infty} S_m \ge 1\} = 1$ for each $m \in \mathbb{N}$.
 - (ii) Deduce that $\mathbb{P}\{\omega \in A_i \text{ for infinitely many } i\} = 1.$
 - (iii) Suppose $\{B_i : i \in \mathbb{N}\} \subset \mathcal{F}$ satisfies $\sum_{i \in \mathbb{N}} \mathbb{P}B_i = \infty$ and $\mathbb{P}(B_i B_j) = (\mathbb{P}B_i)(\mathbb{P}B_j)$ for all $i \neq j$. Show that $\mathbb{P}\{\omega \in B_i \text{ for infinitely many } i\} = 1$. Please use (ii). I am not interested in seeing the standard textbook proof for the harder direction of Borel-Cantelli.
- [4] Suppose \mathcal{A} is a sigma-field on a set \mathfrak{X} and μ is a measure on \mathcal{A} . Write \mathcal{N}_{μ} for $\{N \in \mathcal{A} : \mu N = 0\}$. Define

$$\mathcal{A}_{\mu} := \{ B \subseteq \mathfrak{X} : \exists A \in \mathcal{A}, N \in \mathcal{N}_{\mu} \text{ such that } |\mathbb{1}_B - \mathbb{1}_A| \leq \mathbb{1}_N \}.$$

- (i) Show that \mathcal{A}_{μ} is a sigma-field.
- (ii) If $|\mathbb{1}_B \mathbb{1}_{A_i}| \leq \mathbb{1}_{N_i}$ for i = 1, 2, with $A_i \in \mathcal{A}$ and $N_i \in \mathcal{N}_{\mu}$, show that $\mu A_1 = \mu A_2$.
- (iii) If $|\mathbb{1}_B \mathbb{1}_A| \leq \mathbb{1}_N$ with $A \in \mathcal{A}$ and $N \in \mathcal{N}_{\mu}$ define $\nu B = \mu A$. Show that ν is a well defined countably additive measure on \mathcal{A}_{μ} whose restriction to \mathcal{A} equals μ .
- [5] Define $x_n = k_n/2^n$, where k_n is the largest integer for which $(k_n/2^n)^2 \leq 3$. Prove that $\{x_n : n \in \mathbb{N}\}$ is a Cauchy sequence of real numbers.