Statistics 330b/600b, Math 330b spring 2018 Homework # 5 Due: Thursday 22 February

Please attempt at least the starred problems. Please explain your reasoning. Keep looking at latex.pdf. Please try to avoid strings of \therefore (???) \therefore (???) \therefore (???) \therefore (???) \ldots They really, really can be hard to decipher.

- *[1] Suppose $\{\mathcal{F}_1, \mathcal{F}_2, \dots, \mathcal{F}_5\}$ are independent sub- σ -fields for a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Define $\mathcal{G}_1 = \sigma(\mathcal{F}_1 \cup \mathcal{F}_2 \cup \mathcal{F}_3)$ and $\mathcal{G}_2 = \sigma(\mathcal{F}_4 \cup \mathcal{F}_5)$.
 - (i) Show that $\mathcal{E}_1 = \{F_1F_2F_3 : F_i \in \mathcal{F}_i \text{ for } i = 1, 2, 3\}$ is a generating class for \mathcal{G}_1 .
 - (ii) Prove that \mathcal{G}_1 and \mathcal{G}_2 are independent.
- *[2] Suppose U_1, U_2, \ldots is a sequence of independent random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, each distributed Unif(0, 1). That is, the distribution of each U_i is Lebesgue measure on $\mathcal{B}[0, 1]$. Define $S_n(\omega, \theta) = \sum_{i \leq n} \mathbb{1}\{U_i(\omega) \leq \theta\}$, for each θ in [0, 1]. (Formally speaking, $\{S_n(\theta) : 0 \leq \theta \leq 1\}$ is a stochastic process.) You may use the fact that $S_n(\theta)$ has a Binomial distribution, with

$$\mathbb{P}\{\omega: S_n(\omega, \theta) = k\} = \binom{n}{k} \theta^k (1-\theta)^{n-k} \quad \text{for } k = 0, 1, \dots, n.$$

- (i) If you are not already aware of the fact, prove that $\mathbb{P}S_n(\theta) = n\theta$ and $\mathbb{P}(S_n(\theta) n\theta)^2 = n\theta(1-\theta)$. Hint: Don't forget that $S_n(\theta)$ is a sum of independent random variables. Kill the orphans!
- (ii) Let g be a continuous function defined on [0,1]. Remember that g must also be uniformly continuous: for each fixed $\epsilon > 0$ there exists a $\delta_{\epsilon} > 0$ such that

 $|g(s) - g(t)| \le \epsilon$ whenever $|s - t| \le \delta_{\epsilon}$, for s, t in [0, 1].

Remember also that |g| must be uniformly bounded, say, $\sup_t |g(t)| = M < \infty$. Show that $|g(x/n) - g(\theta)| \le \epsilon + 2M|x - n\theta|^2/(n\delta_\epsilon)^2$ for $0 \le x \le n$.

- (iii) Explain why $p_n(\theta) := \mathbb{P}g(S_n(\theta)/n)$ is a polynomial in θ .
- (iv) Deduce that $\sup_{0 \le \theta \le 1} |p_n(\theta) g(\theta)| < 2\epsilon$ for *n* large enough. That is, deduce that $g(\cdot)$ can be uniformly approximated by polynomials over the range [0,1], a result known as the **Weierstrass approximation theorem**.
- *[3] (Hoeffding's inequality)
 - (i) Suppose X is a random variable with $\mathbb{P}X = 0$ and $\mathbb{P}\{a \leq X \leq b\} = 1$, where a and b are constants. Prove that

$$\operatorname{var}(X) = \min_{t \in \mathbb{R}} \mathbb{P}|X - t|^2 \le (b - a)^2/4.$$

- (ii) With X as in (i), use HW2.3 to show that the function $L(\theta) := \log \mathbb{P}e^{\theta X}$ has $L''(\theta) \leq (b-a)^2/4$.
- (iii) Suppose X_1, \ldots, X_n are independent random variables for which $\mathbb{P}X_i = 0$ and $\mathbb{P}\{a_i \leq X_i \leq b_i\} = 1$ for constants a_i and b_i . Prove that

$$\mathbb{P}\exp(\theta(X_1+\cdots+X_n)) \le \exp\left(\theta^2 \sum_i (b_i-a_i)^2/8\right).$$

(iv) Prove that

$$\mathbb{P}\left\{\sum_{i} X_{i} \geq t\right\} \leq \inf_{\theta > 0} \mathbb{P} \exp\left(-\theta t + \theta \sum_{i} X_{i}\right) \leq \exp\left(-2t^{2} / \sum_{i} (b_{i} - a_{i})^{2}\right).$$

for each $t \geq 0$.