Statistics 330b/600b, Math 330b spring 2018

Homework # 8

Due: Thursday 29 March

*[1] Suppose $(\mathcal{Y}, \mathcal{B}, \mathbb{Q})$ is a probability space and $g_1, g_2 \in \mathcal{M}^+(\mathcal{Y}, \mathcal{B})$ have the property that

 $\mathbb{Q}g_1(y)\mathbb{1}\{y \in B\} \le \mathbb{Q}g_1(y)\mathbb{1}\{y \in B\} \quad \text{for all } B \text{ in } \mathcal{B}.$

Prove that $g_1(y) \leq g_2(y)$ a.e. $[\mathbb{Q}]$. Hint: Consider sets of the form $\{g_1(y) \geq r > s \geq g_2(y)\}$ for constants r and s.

- [2] Let \mathcal{K}_0 be an essentially closed, convex subset of $\mathcal{L}^2 := \mathcal{L}^2(\mathcal{X}, \mathcal{A}, \mu)$. For a fixed f in $\mathcal{H} \setminus \mathcal{K}_0$ define $\delta := \inf\{\|f h\|_2 : h \in \mathcal{K}_0\}$. Show that:
 - (i) There is an f_0 (unique up to μ -equivalence) in \mathcal{K}_0 for which $||f f_0||_2 = \delta$.
 - (ii) \mathcal{K}_0 is contained in the half-space $\{h \in \mathcal{L}^2 : \langle h f_0, f f_0 \rangle \leq 0\}$.

You do do need to repeat steps that are identical to those in the Hilbert handout. You might find it helpful to draw a picture of $t \mapsto ||f - (1-t)f_0 - th||_2^2 - \delta^2$ for a fixed h in \mathcal{K}_0 .

- *[3] Suppose \mathcal{A} is a sigma-field on a set \mathfrak{X} and $\mathcal{B} = \sigma(\mathcal{E})$ is a sigma-field on a set \mathcal{Y} . Suppose also that \mathcal{E} is a countable field (stable under complements, pairwise unions, and pairwise intersection) that separates the points of \mathcal{Y} : if $y_1 \neq y_2$ there exists a set $E \in \mathcal{E}$ for which $\mathbb{1}_E(y_1) \neq \mathbb{1}_E(y_2)$. For a given $\mathcal{A} \setminus \mathcal{B}$ -measurable map T from \mathfrak{X} into \mathcal{Y} , define $G := \{(x, y) \in \mathfrak{X} \times \mathcal{Y} : y = Tx\}$.
 - (i) Define $H := \bigcup_{E \in \mathcal{E}} (T^{-1}(E^c)) \times E$. Show that $H \subseteq G^c$.
 - (ii) If $(x, y) \in G^c$ show that there exists an $E \in \mathcal{E}$ for which $\mathbb{1}_E(Tx) \neq \mathbb{1}_E(y)$.
 - (iii) Deduce that $G = H^c \in \mathcal{A} \otimes \mathcal{B}$.
 - (iv) Suppose \mathbb{P} is a probability measure on \mathcal{A} whose image under T is a probability measure \mathbb{Q} on \mathcal{B} . Define $\psi(x) = (x, Tx)$. Let γ be the image (on $\mathcal{A} \otimes \mathcal{B}$) of \mathbb{P} under ψ . Finally, suppose $\mathcal{K} = \{K_y : y \in \mathcal{Y}\}$ is a set of probability measures on \mathcal{A} for which $\gamma f = \mathbb{Q}^y K_y^x f(x, y)$ for each f in $\mathcal{M}^+(\mathcal{X} \times \mathcal{Y}, \mathcal{A} \otimes \mathcal{B})$. Show that

$$K_y\{x \in \mathfrak{X} : Tx \neq y\} = 0$$
 a.e. $[\mathbb{Q}]$.

[4] Suppose $(\mathfrak{X}, \mathcal{A}, \mu)$ and $(\mathfrak{Y}, \mathfrak{B}, \mu)$ are both measure spaces and T is an $\mathcal{A}\setminus \mathcal{B}$ -measurable map from \mathfrak{X} to \mathfrak{Y} . Suppose also that $\Lambda = \{\lambda_y : y \in \mathfrak{Y}\}$ is a set of measures on \mathcal{A} for which

 $\lambda f(x) = \mu^y \lambda_u^x f(x)$ for each f in $\mathcal{M}^+(\mathcal{X}, \mathcal{A})$.

and $\lambda_y \{x : Tx \neq y\} = 0$ a.e. $[\mu]$.

Remark. It is implicit that $y \mapsto \lambda_y^x f(x)$ should be \mathcal{B} -measurable. UGMTP Appendix F gives conditions under which such a decomposition exists.

Suppose \mathbb{P} is a probability measure on \mathcal{A} that has density p(x) with respect to λ . Let \mathbb{Q} be the image of \mathbb{P} under T.

- (i) Show that \mathbb{Q} has density $q(y) := \lambda_y^x p(x)$ with respect to μ and $\mathbb{Q}\{y : q(y) = 0\} = 0$.
- (ii) Define \mathbb{P}_y to be the measure on \mathcal{A} that has density $p(x \mid y) = \mathbb{1}\{q(y) > 0\}p(x)/q(y)$ with respect to λ_y . Show that $y \mapsto \mathbb{P}_y f(x)$ is \mathcal{B} -measurable for each f in $\mathcal{M}^+(\mathcal{X}, \mathcal{A})$.
- (iii) For each f in $\mathcal{M}^+(\mathcal{X}, \mathcal{A})$ show that

$$\mathbb{Q}^y \mathbb{P}^x_y f(x) = \mathbb{P}^x \mathbb{1}\{q(Tx) > 0\} f(x) = \mathbb{P}f(x).$$