Statistics 330b/600b, Math 330b spring 2018

Homework # 9

Due: Thursday 5 April

- *[1] Suppose $(\mathfrak{X}, \mathcal{A}, \mathbb{P})$ is a probability space and $T : \mathfrak{X} \to \mathcal{Y} = \{1, 2, \dots, k\}$ is a map for which $B_i = \{x : Tx = i\}$ is \mathcal{A} -measurable, for each *i*. Let \mathcal{B} denote the sigma-field generated by the sets B_1, \dots, B_k .
 - (i) Show that each g in $\mathcal{M}^+(\mathfrak{X}, \mathcal{B})$ must be of the form $\sum_{i=1}^k \alpha_i \mathbb{1}\{x \in B_i\}$, for constants α_i with $0 \leq \alpha_i \leq \infty$. Hint: Why could there not exist points x_1 and x_2 in some B_i for which $g(x_1) \neq g(x_2)$?
 - (ii) If $\mathbb{Q}\{i\} > 0$ define $K_i f = \mathbb{P}(f(x)\mathbb{1}\{x \in B_i\})/\mathbb{P}B_i$ for $f \in \mathcal{M}^+(\mathcal{X}, \mathcal{A})$. If $\mathbb{Q}\{i\} = 0$ let K_i be the zero measure on \mathcal{A} , that is, $K_i f = 0$ for $f \in \mathcal{M}^+(\mathcal{X}, \mathcal{A})$. Show that $\mathbb{K} = \{K_i : 1 \le i \le k\}$ provides a conditional distribution for \mathbb{P} given T.
 - (iii) Find $\mathbb{P}_{\mathcal{B}}f$ for $f \in \mathcal{M}^+(\mathcal{X}, \mathcal{A})$.
- *[2] (Neyman factorization theorem cf. UGMTP Example 5.31) Suppose $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space and $\{\mathbb{P}_{\theta} : \theta \in \Theta\}$ is a set of probability measures on \mathcal{F} with each \mathbb{P}_{θ} absolutely continuous with respect to \mathbb{P} . Suppose also that \mathcal{G} is a sub-sigma-field of \mathcal{F} and that \mathbb{P}_{θ} has density

$$p(\omega, \theta) = g_{\theta}(\omega)h(\omega)$$
 with $g_{\theta} \in \mathcal{M}^+(\Omega, \mathcal{G})$ for each θ

for a fixed $h \in \mathcal{M}^+(\Omega, \mathcal{F})$ that doesn't depend on θ . That is, $\mathbb{P}_{\theta}f = \mathbb{P}\left(g_{\theta}(\omega)h(\omega)f(\omega)\right)$ for each f in $\mathcal{M}^+(\Omega, \mathcal{F})$.

Let H be a function (unique up to \mathbb{P} -equivalence) in $\mathcal{M}^+(\Omega, \mathcal{G})$ for which

$$\mathbb{P}g(\omega)h(\omega) = \mathbb{P}g(\omega)H(\omega) \quad \text{for each } g \text{ in } \mathcal{M}^+(\Omega, \mathcal{G}).$$

(That is H is a possible choice for $\mathbb{P}(h \mid \mathcal{G})$.)

- (i) Show that $\mathbb{P}_{\theta}\{H=0\}=0$ for each θ .
- (ii) Show that $\mathbb{P}_{\theta}\{H = \infty\} = 0$ for each θ . Hint: Start by showing that

$$1 \ge n \mathbb{P} g_{\theta} \mathbb{1} \{ H(\omega) = \infty \}$$
 for each $n \in \mathbb{N}$.

What does that tell you about $g_{\theta}(\omega) \mathbb{1}\{H(\omega) = \infty\}$?

(iii) For each X in $\mathcal{M}^+(\Omega, \mathfrak{F})$ and some fixed choice of γ of $\mathbb{P}(Xh \mid \mathfrak{G})$ define

$$Y(\omega) = \frac{\gamma(\omega)}{H(\omega)} \mathbb{1}\{0 < H < \infty\}.$$

Show that $\mathbb{P}_{\theta}(X \mid \mathcal{G}) = Y$ a.e $[\mathbb{P}_{\theta}]$ for every θ .

[3] Give a complete proof of the Radon-Nikodym theorem (Theorem $\langle 21 \rangle$ in the Hilbert handout). That is, turn the sketch into a real proof.