
S&DS 400/600, spring 2018
Homework #10 solutions

*[1] Suppose {Fi : i ∈ N0} is a filtration on a probability space (Ω,F,P). As before
define F∞ := σ(∪i∈N0Fi). Suppose that τ is a stopping time for the filtration
and that X ∈M+(Ω,F). Show that X is Fτ -measurable if and only if there
exists Xi in M+(Fi), for 0 ≤ i ≤ ∞, such that X(ω) =

∑
0≤i≤∞Xi(ω)1{ω :

τ(ω) = i}.
Solution: Remember that the set {τ = i} is both Fi-measurable
and Fτ -measurable.

If X is Fτ -measurable define Xi = X1{τ = i}. The decomposi-
tion holds because

∑
0≤i≤∞ 1{ω : τ(ω) = i} = 1. For each c in R+,

the set {X > c} is Fτ -measurable and, for i ∈ N0,

{Xi > c} = {X > c}{t = i} = {X > c}{t ≤ i} − {X > c}{t ≤ i− 1},

which belongs to Fi. This shows that Xi is Fτ -measurable for each i
in N0. For i =∞ the result is even easier because Fτ ⊆ F∞.

Conversely, if X has the stated decomposition then it is enough
to show that each Yi := Xi1{τ = i} is Fτ -measurable. Clearly Yi is
Fi-measurable. For each c > 0 and each t ∈ N0,

{Yi > c}{τ ≤ t} = {Xi > c}{τ = i}{τ ≤ t}.

This set is empty if i > t. If i ≤ t it equals {Xi > c}{τ = i}, which
belongs to Fi ⊆ Ft. Thus {Yi > c}{τ ≤ t} ∈ Ft for each t ∈ N0,
which is the test for showing that the F∞-measurable set {Yi > c}
belongs to Fτ for each c in R+.

*[2] Suppose {(Xi,Fi) : i = 0, 1, . . . , n} is a martingale with PX2
i <∞ for each i.

Define M := maxi≤n |Xi|.
(i) For each t > 0 define σ(t) := σt(ω) = n ∧ inf{i : |Xi(ω)| ≥ t}. Show that

σ(t) is a stopping time for which

{M ≥ t} = {|Xσ(t)| ≥ t} ≤ |Xσ(t)|{|Xσ(t)| ≥ t}/t.

Solution: Note that {σt ≤ n} = Ω ∈ Fn and

{σt ≤ k} = ∪i≤k{|Xi| ≥ t} ∈ Fk for k < n.

For the pointwise result, note that M(ω) ≥ t iff there exists an
i ≤ n for which |Xi(ω)| ≥ t. The stopping time σt(ω) picks out the
first such i. Conversely, because σt(ω) takes values in {0, 1, . . . , n},
if |Xσt(ω)(ω)| ≥ t then M(ω) ≥ |Xi(ω)| ≥ t for i = σt(ω). The tricky



bit is handling the case where |Xi(ω)| < t for all i. In that case,
σt(ω) = n but, fortunately |Xn(ω)| < t.

The inequality comes from the fact, for any random variable Y ,
that |Y (ω)|/t ≥ 1 if |Y (ω)| ≥ t.

(ii) Use the stronger form of the Stopping Time Lemma to deduce that

tP{M ≥ t} ≤ P|Xn|{M ≥ t} for each t > 0.

Solution: The set F = {M ≥ t} = {|Xσt | ≥ t} belongs to Fσt
because Xσt is Fσt-measurable. Note that {(|Xi|,Fi) : i = 0, 1, . . . , n}
is a submartingale and 0 ≤ σt ≤ τ ≡ n always. By the STL,

P|Xσt |F ≤ P|Xn|F.

Note that part (i) gives {M ≥ t} = F ≤ |Xσt |F/t.

(iii) Integrate the last inequality with respect to t then invoke the Hölder inequality
to conclude that PM2 ≤ 4PX2

n. Hint: If you plan on dividing by
√
PM2 you

should explain why this quantity is neither zero nor infinite.

Solution:

PM2 = Pω
∫ ∞
0

2t{ω : M(ω) ≥ t} dt

=

∫ ∞
0

2tPω{ω : M(ω) ≥ t} dt by Tonelli

≤
∫ ∞
0

2P|Xn|{ω : M(ω) ≥ t} dt by part (ii)

= 2P
(
|Xn|

∫ ∞
0
{ω : M(ω) ≥ t} dt

)
by Tonelli

= 2P|Xn|M

≤ 2
√

(PX2
n)(PM2) by Hölder (or Cauchy-Schwarz).

Note that the asserted inequality is trivial if PM2 = 0. Also

PM2 ≤
∑n

i=0
PX2

i <∞.

Accordingly, there is no problem in dividing both sides by
√
PM2 then

squaring both sides of the resulting inequality.

*[3] Suppose {(Xt,Ft) : t ∈ N0} is a martingale with Γ2 := supt∈N0
PX2

t < ∞.
Define F∞ = σ (∪t∈N0Ft).

(i) Show that P(X` −Xk)Xk = 0 if k < `. Deduce that PX2
t increases to Γ2 as

t→∞.



Solution: As X` ∈ L2(F) we have PFk
X` ∈ L2(Fk) (it is the

orthogonal projection of X` onto L2(Fk)) and X` − PFk
X` is orthog-

onal to L2(Fk). The martingale property gives Xk = PFk
X` a.e. [P].

Expand a square then take expected values to get

PX2
` = PX2

k + 2〈X` −Xk, Xk〉+ P(X` −Xk)
2.

The orthogonality kills the cross-product term. The resulting inequal-
ity shows that PX2

` ≥ PX2
k if ` > k. The sequence {PX2

k : k ∈ N0}
increases to its supremum.

(ii) For ` and k in N0 with ` > k and δ > 0 show that

Γ2 ≥ PX2
` = PX2

k + P(X` −Xk)
2

≥ Γ2 − δ + P(X` −Xk)
2 if k is large enough.

Deduce that {Xt : t ∈ N0} is a Cauchy sequence in L2(Ω,F∞,P), which
converges in L2 to some X∞ ∈ L2(Ω,F∞,P).

Solution: We already have the first line. The second line comes
from the convergence of PX2

k to the finite Γ2.

(iii) Show that ‖X∞‖2 = Γ.

Solution: Use | ‖X∞‖2 − ‖Xk‖2 | ≤ ‖Xk −X∞‖2.

(iv) For positive integers k < `, use Problem [2] to show that

P supk≤t≤` |Xt −Xk|2 ≤ 4P|X` −Xk|2.

Let ` tend to ∞ to deduce that, for each fixed k,

P supt≥k |Xt −Xk|2 ≤ 4ε2k := 4P|X∞ −Xk|2.

Solution: Apply Doob’s inequality (from Problem 2) to the mar-
tingale

{(Xt −Xk,Ft) : t = k, k + 1, . . . , `}

to get the first inequality.
As ` → ∞ the random variable supk≤t≤` |Xt −Xk|2 increases to

supt≥k |Xt −Xk|2. Appeal to Monotone Convergence. For the right-
hand side use

| ‖X` −Xk‖2 − ‖X∞ −Xk‖2 | ≤ ‖X` −X∞‖2 → 0 as `→∞.

(v) Define Yk := supt≥k |Xt −X∞|. Show that

PYk ≤
∥∥supt≥k |Xt −Xk|

∥∥
2

+ ‖Xk −X∞‖2 ≤ 3εk.



Solution: Start from

|Xt −X∞| ≤ |Xt −Xk|+ |Xk −X∞|.

Take supt≥k on both sides to get

Yk ≤ supt≥k |Xt −Xk|+ |Xk −X∞|.

Then argue that

PYk = ‖Yk‖1 ≤ ‖Yk‖2 ≤
∥∥supt≥k |Xt −Xk|

∥∥
2

+ ‖Xk −X∞‖2 .

Use (iv) to bound the right-hand side.

(vi) Prove that Yk ↓ 0 a.e. [P]. Deduce that Xt → X∞ a.e. [P] as t→∞.

Solution: As k increases the set of t’s over which the sup is
taken decreases. The non-negative random variables must decrease
pointwise to a limit Y∞ ≥ 0. From (v), PY∞ ≤ 3εk for every k, which
implies Y∞ = 0 a.e. [P].

For the second bit use Yk ≥ |Xk −X∞|.
∗(vii) Show that Xt = P(X∞ | Ft) a.e. [P].

Solution: For F ∈ Ft and ` > t,

|P(XtF )− P(X∞F )| = |P(X`F )− P(X∞F )| ≤ ‖X` −X∞‖2 .

Let ` tend to infinity.

[4] Let (Ω,F,P) be a probability space and G be a sub-sigma-field of F. Suppose
{Xn : n ∈ N} is a sequence of random variables that converges to 0 a.e. [P].
Suppose also that |Xn| ≤W ∈ L1(Ω,F,P) for all n.

Define Zi = PGXi and Sn = supi≥n |Xi| and Yn = supi≥n |Zi|. Prove
that

PYn ≤ PSn → 0 as n→∞.

Deduce that PGXn → 0 a.e. [P].

[5] (HARD) Suppose {Zi : i ∈ N0} is a sequence of random variables defined
on Ω and Fn = σ(Z0, Z1, . . . , Zn) for n ∈ N0. Let τ be a stopping time for
that filtration.

(i) Explain why every Fn-measurable (real valued) random variable Y can be
written in the form Y (ω) = gn(Z0(ω), . . . , Zn(ω)) for some B(Rn+1)-measurable
function gn. Hint: Lecture 3.

(ii) Define Xi = Zτ∧i and G := σ(Xi : i ∈ N0). Prove that Xi is Fτ -measurable.
Deduce that G ⊆ Fτ . Hint: Split {Xi ∈ B}{τ ≤ n} into contributions from
various sets {τ = j}.

(iii) Prove that τ is G-measurable. Hint: {τ = 0} = g0(Z0) = g0(X0) and
{τ = 1} = g1(Z0, Z1) = g1(Z0, Z1){τ ≥ 1} = g1(X0, X1){τ = 0}c.

(iv) Show that Fτ ⊆ G. Hint: If F ∈ Fτ consider sets F{τ = j} for j ∈ N0.


