Statistics 330b/600b, Math 330b spring 2018

Homework # 11 Due: Thursday 19 April

- *[4] I have a collection of m different coins, the *i*th of which lands heads with probability θ_i when tossed. Let \mathbb{Q} be a probability measure on $\{1, 2, \ldots, m\}$ for which $\mathbb{Q}\{i\} = p_i$ for $i = 1, \ldots, m$, where $p_i > 0$ for each *i*. I generate a sequence of random variables X_1, X_2, \ldots as follows. First generate an observation T from \mathbb{Q} . If T = ithen toss the *i*th coin repeatedly, recording $X_j = 1$ if the *j*th toss lands heads and $X_j = 0$ for tails.
 - (i) Show that $\mathbb{P}X_1 = \overline{\theta} := \sum_{i=1}^m p_i \theta_i$. Hint: Condition.
 - (ii) For each set $\{n_1, \ldots, n_k\}$ of k distinct positive integers find $\mathbb{P}(\prod_{i=1}^k X_{n_i})$.
 - *(iii) Show that the sequence $(X_n, n \in \mathbb{N})$ is exchangeable (UGMTP Definition 6.49).
 - (iv) Show that $cov(X_1, X_2) = 0$ if and only if $\theta_i = \overline{\theta}$ for every *i*.
 - *(v) Explain why X_1, X_2, \ldots are independent if and only if $\theta_i = \overline{\theta}$ for every *i*.

Remark. The ill-fated problem [4] has been causing more problems. You could interpret it the following way.

Suppose $\mathbb{P}_1, \ldots, \mathbb{P}_m$ are probability measures on (Ω, \mathcal{F}) and X_1, X_2, \ldots are measurable maps from Ω into $\{0, 1\}$. Under \mathbb{P}_i , the X_j 's are independent, each with distribution $\operatorname{Ber}(\theta_i)$. Define $\mathbb{P} = \sum_{i=1}^m p_i \mathbb{P}_i$.

Part (iii) effectively asks you to prove that, for each k and each permutation σ of (1, 2, ..., k) and all choices of $\alpha_1, ..., \alpha_k$ from $\{0, 1\}$,

$$\mathbb{P}\{X_1 = \alpha_1, X_2 = \alpha_2, \dots, X_k\} = \mathbb{P}\{X_{\sigma(1)} = \alpha_1, X_{\sigma(2)} = \alpha_2, \dots, X_{\sigma(k)}\}\$$

Hint: Note that $\mathbb{1}{X_j = 1} = X_j$ and $\mathbb{1}{X_j = 0} = 1 - X_j$. That leads to simplifications such as

$$\mathbb{1}\{X_1 = 1, X_2 = 0, X_3 = 1, X_4 = 0\} = X_1(1 - X_2)X_3(1 - X_4)$$
$$= X_1X_3 - \dots + X_1X_2X_3X_4.$$

SOLUTION: In the original statement of the problem \mathbb{Q} was supposed to be the distribution of T and \mathbb{P}_i was supposed to be thought of as $\mathbb{P}(\cdot \mid T = i)$.

The suggested method of solution for (iii) was unnecessarily complicated. Instead argue, for each k and each choice of $\alpha_1, \ldots, \alpha_k$ from $\{0, 1\}$,

$$\mathbb{P}\{X_1 = \alpha_1, \dots, X_k = \alpha_k\} = \sum_i p_i \mathbb{P}_i\{X_1 = \alpha_1, \dots, X_k = \alpha_k\}$$
$$= \sum_i p_i \theta_i^h (1 - \theta_i)^{1-h} \quad \text{where } h = \sum_{i=1}^k \alpha_i.$$

If $t = \sigma^{-1}$, that is, if $\sigma(i) = j$ iff $\tau(j) = i$, then

$$\mathbb{P}\{X_{\sigma(1)} = \alpha_1, \dots, X_{\sigma(k)} = \alpha_k\} = \mathbb{P}\{X_1 = \alpha_{\tau(1)}, \dots, X_k = \alpha_{\tau(k)}\},\$$

which again equals $\sum_{i} p_i \theta_i^h (1 - \theta_i)^{1-h}$ because h is unaffected by the τ permutation. That gives the exchangeability.

Specialize to k = 1 and $\alpha_1 = 1$ to get $\mathbb{P}X_1 = \mathbb{P}\{X_1 = 1\} = \overline{\theta}$.

Specialize to $\alpha_1 = \alpha_2 = \cdots = \alpha_k = 1$ to get $\mathbb{P}(X_1 \dots X_k) = \sum_i p_i \theta_i^k$. Exchangeability gives the same value for distinct n_1, \dots, n_k .

Consequently,

$$\operatorname{cov}(X_1, X_2) = \mathbb{P}(X_1 X_2) - (\mathbb{P}X_1) (\mathbb{P}X_2) = \left(\sum_i p_i \theta_i^2\right) - \overline{\theta}^2 = \sum_i p_i (\theta_i - \overline{\theta})^2.$$

Clearly $\operatorname{cov}(X_1, X_2) = 0$ iff $\theta_i = \overline{\theta}$ for every *i*. A non-zero covariance implies dependence. And if $\theta_i = \overline{\theta}$ for each *i* then X_1, X_2, \ldots are independent $\operatorname{Ber}(\overline{\theta})$ distributed under \mathbb{P} .