Statistics 330/600, spring 2018 Homework #9 solutions

*[1] Suppose $(\mathfrak{X}, \mathcal{A}, \mathbb{P})$ is a probability space and $T : \mathfrak{X} \to \mathfrak{Y} = \{1, 2, ..., k\}$ is a map for which $B_i = \{x : Tx = i\}$ is \mathcal{A} -measurable, for each i. Let \mathcal{B} denote the sigma-field generated by the sets $B_1, ..., B_k$.

SOLUTION: Implicitly the set \mathcal{Y} is equipped with the sigma-field \mathcal{C} consisting of all subsets and T is $\mathbb{B}\setminus\mathbb{C}$ -measurable because

$$T^{-1}(C) = \bigcup_{i \in C} B_i \in \mathcal{B}$$
 for each C in \mathcal{C} .

The distribution of T under \mathbb{P} is the probability measure \mathbb{Q} on \mathbb{C} for which $\mathbb{Q}\{i\} = \mathbb{P}(T^{-1}\{i\}) = \mathbb{P}B_i$. Many of you got the functions g and T confused.

(i) Show that each g in $\mathcal{M}^+(\mathfrak{X}, \mathfrak{B})$ must be of the form $\sum_{i=1}^k \alpha_i \mathbb{1}\{x \in B_i\}$, for constants α_i with $0 \le \alpha_i \le \infty$. Hint: Why could there not exist points x_1 and x_2 in some B_i for which $g(x_1) \ne g(x_2)$?

SOLUTION: If x_1 and x_2 belong to the same B_i then $\mathbb{1}_E(x_1) = \mathbb{1}_E(x_2)$ for each E in the generating class $\mathcal{E} = \{B_1, \ldots, B_k\}$. You can check that

$$\mathcal{B}_0 = \{ B \in \mathcal{B} : \mathbb{1}_B(x_1) = \mathbb{1}_B(x_2) \}$$

is a sigma-field for which $\mathcal{B}_0 \supset \mathcal{E}$. It follows that $\mathcal{B}_0 = \mathcal{B}$. For every B in \mathcal{B} , either $\{x_1, x_2\} \subset B$ or $\{x_1, x_2\} \subset B^c$. Equivalently, if $B \in \mathcal{B}$ and $B \cap B_i \neq \emptyset$ then $B \supset B_i$. Again equivalently, if B_i is partitioned into the union of two disjoint sets in \mathcal{B} then one of the sets must be empty.

Remark. The B_i 's are called **atoms** of the sigma-field \mathcal{B} because none of them can be split into a non-trivial union of two disjoint \mathcal{B} -sets. Another way to prove that the B_i 's are atoms is to show that every non-empty member of \mathcal{B} is a finite union of B_i 's.

If $g(x_1) = a_1 \neq a_2 = g(x_2)$ then $B := g^{-1}\{a_1\} \cap B_i \in \mathcal{B}$ and $\mathbb{1}_B(x_1) = 1 \neq 0 = \mathbb{1}_B(x_2)$: a contradiction. We cannot use a \mathcal{B} measurable function to split the atoms of \mathcal{B} . Thus g must take a constant value, say α_i , on each set B_i , that is, $g(x) = \sum_{i=1}^k \alpha_i \mathbb{1}\{x \in B_i\}$. The $\mathcal{B} \setminus \mathcal{B}[0, \infty]$ -measurable functions must be constant on each atom of \mathcal{B} .

(ii) If $\mathbb{P}B_i > 0$ define $K_i f = \mathbb{P}(f(x)\mathbb{1}\{x \in B_i\})/\mathbb{P}B_i$ for $f \in \mathcal{M}^+(\mathcal{X}, \mathcal{A})$. If $\mathbb{P}B_i = 0$ let K_i be the zero measure on \mathcal{A} , that is, $K_i f = 0$ for $f \in$ $\mathcal{M}^+(\mathcal{X}, \mathcal{A})$. Show that $\mathbb{K} = \{K_i : 1 \leq i \leq k\}$ provides a conditional distribution for \mathbb{P} given T.

SOLUTION: By construction

$$K_i\{x: Tx \neq i\} = K_i B_i^c = \begin{cases} 0 & \text{if } \mathbb{P}B_i = 0\\ \mathbb{P}(B_i^c B_i) / \mathbb{P}B_i = 0 & \text{if } \mathbb{P}B_i \neq 0. \end{cases}$$

Remark. Actually I didn't need to worry about those i for which $\mathbb{Q}\{i\} = 0$ because we only need $K_i\{x : Tx \neq i\} = 0$ a.e. $[\mathbb{Q}]$ and $K_i\mathfrak{X} = 1$ a.e. $[\mathbb{Q}]$.

Every function from \mathcal{Y} into \mathbb{R} is \mathbb{C} -measurable because every subset of \mathcal{Y} belongs to \mathbb{C} . In particular, $i \mapsto K_i f$ is \mathbb{C} -measurable.

To show that \mathbb{K} plays the role of a conditional distribution we also need to show that

$$\mathbb{P}f = \mathbb{Q}^{y} K_{y}^{x} f(x) = \sum_{i \in \mathcal{Y}} \mathbb{Q}\{i\} K_{i} f \quad \text{for each } f \text{ in } \mathcal{M}^{+}(\mathcal{X}, \mathcal{F}).$$

This follows by linearity and the fact that $\sum_{i \in \mathbb{Y}} \mathbb{1}_{B_i} = 1$:

$$\mathbb{P}f = \sum\nolimits_{i \in \mathcal{Y}} \mathbb{P}(f\mathbb{1}_{B_i}) = \sum\nolimits_{i \in \mathcal{Y}} (\mathbb{P}B_i)(K_i f).$$

The moral: In the case where T takes on only finitely (or countably) many different values the conditional distributions can be defined (in elementary fashion) by taking ratios.

(iii) Find $\mathbb{P}_{\mathbb{B}}f$ for $f \in \mathcal{M}^+(\mathcal{X}, \mathcal{A})$.

SOLUTION: If you could fight your way through all the abstractions you might remember that $\mathbb{P}_{\mathbb{B}}f$ is just a function F in $\mathcal{M}^+(\mathfrak{X}, \mathbb{B})$ for which

$$\mathbb{P}(fG) = \mathbb{P}(FG)$$
 for each G in $\mathcal{M}^+(\mathfrak{X}, \mathcal{B})$.

The function F must be of the form $\sum_{i \in \mathcal{Y}} \beta_i \mathbb{1}\{x \in B_i\}$. The general G is representable as $\sum_{i \in \mathcal{Y}} \alpha_i \mathbb{1}\{x \in B_i\}$. Thus we need

$$\sum_{i \in \mathcal{Y}} \alpha_i \beta_i \mathbb{P}B_i = \mathbb{P}(FG) = \mathbb{P}(fG) = \sum_{i \in \mathcal{Y}} \alpha_i \mathbb{P}(f\mathbb{1}_{B_i}).$$

By considering cases where only one of the α_i 's is non-zero you can check that the solution for F is given by

$$\beta_i = \begin{cases} \mathbb{P}(f\mathbb{1}_{B_i})/\mathbb{P}B_i & \text{if } \mathbb{P}B_i \neq 0\\ \text{arbitrary} & \text{if } \mathbb{P}B_i = 0. \end{cases}$$

The only ambiguity in the choice of F comes from its values on sets B_i with $\mathbb{P}B_i = 0$. In short, $F(x) := \sum_{i \in \mathbb{Y}} \mathbb{1}\{x \in B_i\} K_i f$ is one of the \mathbb{P} -equivalence class of $\mathcal{M}^+(\mathfrak{X}, \mathfrak{B})$ functions that can play the role of $(\mathbb{P}_{\mathfrak{B}}f)(x)$.

In class I tried to argue that we don't really need the Kolmogorov abstraction when a conditional probability distribution exists. This problem was my attempt to provide some clarification.

If, as in this problem, a conditional distribution exists then the function $\kappa(y, f) := K_y^x f(x)$, the expected value of f with respect to the conditional distribution, can be taken as the conditional expectation $\mathbb{P}(f \mid T = y)$. The Kolmogorov construction for $\kappa(y, f)$ provides a function with analogous properties to $K_y f$. The construction is most useful as a substitute for 'expectations with respect to conditional distributions' when the full conditional distribution does not exist. The Kolmogorov conditional expectation, $\mathbb{P}(f \mid T)$ or $\mathbb{P}_{\mathbb{B}}f$, as a function on \mathfrak{X} is defined as $\kappa(Tx, f)$. It corresponds to writing $\mathbb{Q}^y g(y) \kappa(y, f)$ as $\mathbb{P}g(Tx) \kappa(Tx, f)$.

Note that chaos ensues in the current problem if you write $\kappa(Tx, f)$ as $K_{Tx}^x f(x)$, because the dummy variable of integration, x, is now confused with the argument of the T. It would be a lot like defining a function on \mathbb{R} by

$$H(y) = \int_0^1 (y+x)^2 dx = y^2 + y + 1/3$$

then evaluating H at $y = \cos(x)$ to get $H(\cos x) = \cos^2 x + \cos x + 1/3$. You would get something quite different from the integral

$$\int_0^1 (\cos(x) + x)^2 dx$$

Instead of a function of x you now have a single real number. It is, however, true that

$$H(\cos x) = \int_0^1 (\cos(x) + z)^2 dz,$$

in the same way that $\kappa(Tx, f) = K_{Tx}^z f(z)$.

*[2] (Neyman factorization theorem cf. UGMTP Example 5.31) Suppose $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space and $\{\mathbb{P}_{\theta} : \theta \in \Theta\}$ is a set of probability measures on \mathcal{F} with each \mathbb{P}_{θ} absolutely continuous with respect to \mathbb{P} . Suppose also that \mathcal{G} is a sub-sigma-field of \mathcal{F} and that \mathbb{P}_{θ} has density

$$p(\omega, \theta) = g_{\theta}(\omega)h(\omega)$$
 with $g_{\theta} \in \mathcal{M}^+(\Omega, \mathcal{G})$ for each θ

for a fixed $h \in \mathcal{M}^+(\Omega, \mathcal{F})$ that doesn't depend on θ . That is, $\mathbb{P}_{\theta}f = \mathbb{P}\left(g_{\theta}(\omega)h(\omega)f(\omega)\right)$ for each f in $\mathcal{M}^+(\Omega, \mathcal{F})$. Let H be a function (unique up to \mathbb{P} -equivalence) in $\mathcal{M}^+(\Omega, \mathcal{G})$ for which

 $\mathbb{P}g(\omega)h(\omega) = \mathbb{P}g(\omega)H(\omega) \quad \text{for each } g \text{ in } \mathcal{M}^+(\Omega, \mathfrak{G}).$

(That is H is a possible choice for $\mathbb{P}(h \mid \mathfrak{G})$.) SOLUTION: Remember that

 $\begin{array}{ll} <1> & \mathbb{P}_{\mathcal{G}}h = H(\omega) & \text{ a.e. } [\mathbb{P}] \\ <2> & \mathbb{P}_{\mathcal{G}}(Xh) = \gamma(\omega) & \text{ a.e. } [\mathbb{P}] \end{array}$

That is, both H and γ are in $\mathcal{M}^+(\Omega, \mathfrak{G})$ and

 $\begin{array}{ll} <3 > & \mathbb{P}(hg) = \mathbb{P}(Hg) \\ <4 > & \mathbb{P}(Xhg) = \mathbb{P}(\gamma g) \end{array}$

for every g in $\mathcal{M}^+(\Omega, \mathfrak{G})$.

(i) Show that $\mathbb{P}_{\theta}\{H=0\}=0$ for each θ . Solution:

$$\mathbb{P}_{\theta}\{H=0\} = \mathbb{P}h(\omega)g_{\theta}(\omega)\{H(\omega)=0\} \quad \text{density} \\ = \mathbb{P}H(\omega)g_{\theta}(\omega)\{H(\omega)=0\} \quad \text{by $<3>$ with $g=g_{\theta}\{H(\omega)=0\}$} \\ = 0 \quad \text{because $H(\omega)\{H(\omega)=0\}=0$ for every ω.}$$

(ii) Show that $\mathbb{P}_{\theta}\{H = \infty\} = 0$ for each θ . Hint: Start by showing that

 $1 \ge n \mathbb{P} g_{\theta} \mathbb{1} \{ H(\omega) = \infty \} \qquad \text{for each } n \in \mathbb{N}.$

What does that tell you about $g_{\theta}(\omega) \mathbb{1}\{H(\omega) = \infty\}$? SOLUTION:

$$\begin{split} 1 &\geq \mathbb{P}_{\theta} \{ H = \infty \} \\ &= \mathbb{P}_{g_{\theta}} h \{ H = \infty \} \\ &= \mathbb{P}_{g_{\theta}} H \{ H = \infty \} \\ &\geq \mathbb{P}_{g_{\theta}} n \{ H = \infty \} \\ & \text{because } H \geq n \text{ on } \{ H = \infty \}. \end{split}$$

Divide both sides of the inequality by n then let n tend to ∞ to deduce that $\mathbb{P}g_{\theta}\{H = \infty\} = 0$. It follows that $g_{\theta}\{H = \infty\} = 0$ a.e. $[\mathbb{P}]$ which implies that $g_{\theta}(\omega)h(\omega)\{H(\omega) = \infty\} = 0$ a.e. $[\mathbb{P}]$. Integrate with respect to \mathbb{P} to get

$$0 = \mathbb{P}g_{\theta}(\omega)h(\omega)\{H(\omega) = \infty\} = \mathbb{P}_{\theta}\{H = \infty\}.$$

(iii) For each X in $\mathcal{M}^+(\Omega, \mathfrak{F})$ and some fixed choice of γ of $\mathbb{P}(Xh \mid \mathfrak{G})$ define

$$Y(\omega) = \frac{\gamma(\omega)}{H(\omega)} \mathbb{1}\{0 < H < \infty\}.$$

Show that $\mathbb{P}_{\theta}(X \mid \mathfrak{G}) = Y$ a.e $[\mathbb{P}_{\theta}]$ for every θ .

SOLUTION: You needed to show that $Y \in \mathcal{M}^+(\Omega, \mathcal{G})$ and

<5> $\mathbb{P}_{\theta}(XG) = \mathbb{P}_{\theta}(YG)$ for each G in $\mathcal{M}^+(\Omega, \mathfrak{G})$.

The ratio of two \mathcal{G} -measurable functions is \mathcal{G} -measurable provided there are no ∞/∞ or 0/0 problems. For Y the indicator function in the definition eliminated those pesky cases. For $\langle 5 \rangle$, start from the right-hand side.

$$\begin{split} \mathbb{P}_{\theta}(YG) &= \mathbb{P}\left(g_{\theta}hYG\right) & \text{density} \\ &= \mathbb{P}(g_{\theta}HYG) & \text{by } <\mathbf{3} > \\ &= \mathbb{P}(g_{\theta}\gamma\{0 < H < \infty\}G) & \text{definition of } HY \\ &= \mathbb{P}(g_{\theta}Xh\{0 < H < \infty\}G) & \text{by } <\mathbf{4} > \\ &= \mathbb{P}_{\theta}(X\{0 < H < \infty\}G). \end{split}$$

Parts (i) and (ii) show that the last expression is unchanged if we add the \mathbb{P}_{θ} -negligible terms $XG\{H = 0\}$ and $XG\{H = \infty\}$ to the final integrand.