
Statistics 330/600, spring 2018
Homework #9 solutions

*[1] Suppose (X,A,P) is a probability space and T : X → Y = {1, 2, . . . , k} is a
map for which Bi = {x : Tx = i} is A-measurable, for each i. Let B denote
the sigma-field generated by the sets B1, . . . , Bk.

Solution: Implicitly the set Y is equipped with the sigma-field C

consisting of all subsets and T is B\C-measurable because

T−1(C) = ∪i∈CBi ∈ B for each C in C.

The distribution of T under P is the probability measure Q on C for
which Q{i} = P(T−1{i}) = PBi.

Many of you got the functions g and T confused.

(i) Show that each g in M+(X,B) must be of the form
∑k

i=1 αi1{x ∈ Bi}, for
constants αi with 0 ≤ αi ≤ ∞. Hint: Why could there not exist points x1
and x2 in some Bi for which g(x1) 6= g(x2)?

Solution: If x1 and x2 belong to the same Bi then 1E(x1) =
1E(x2) for each E in the generating class E = {B1, . . . , Bk}. You
can check that

B0 = {B ∈ B : 1B(x1) = 1B(x2)}

is a sigma-field for which B0 ⊃ E. It follows that B0 = B. For
every B in B, either {x1, x2} ⊂ B or {x1, x2} ⊂ Bc. Equivalently,
if B ∈ B and B ∩ Bi 6= ∅ then B ⊃ Bi. Again equivalently, if Bi is
partitioned into the union of two disjoint sets in B then one of the
sets must be empty.

Remark. The Bi’s are called atoms of the sigma-field B because none
of them can be split into a non-trivial union of two disjoint B-sets.
Another way to prove that the Bi’s are atoms is to show that every
non-empty member of B is a finite union of Bi’s.

If g(x1) = a1 6= a2 = g(x2) then B := g−1{a1} ∩ Bi ∈ B

and 1B(x1) = 1 6= 0 = 1B(x2): a contradiction. We cannot use a B-
measurable function to split the atoms of B. Thus g must take a con-
stant value, say αi, on each set Bi, that is, g(x) =

∑k
i=1 αi1{x ∈ Bi}.

The B\B[0,∞]-measurable functions must be constant on each atom
of B.

(ii) If PBi > 0 define Kif = P(f(x)1{x ∈ Bi})/PBi for f ∈ M+(X,A).
If PBi = 0 let Ki be the zero measure on A, that is, Kif = 0 for f ∈



M+(X,A). Show that K = {Ki : 1 ≤ i ≤ k} provides a conditional distribu-
tion for P given T .

Solution: By construction

Ki{x : Tx 6= i} = KiB
c
i =

{
0 if PBi = 0
P(Bc

iBi)/PBi = 0 if PBi 6= 0.

Remark. Actually I didn’t need to worry about those i for which Q{i} =
0 because we only need Ki{x : Tx 6= i} = 0 a.e. [Q] and KiX = 1
a.e. [Q].

Every function from Y into R is C-measurable because every subset
of Y belongs to C. In particular, i 7→ Kif is C-measurable.

To show that K plays the role of a conditional distribution we also
need to show that

Pf = QyKx
y f(x) =

∑
i∈Y

Q{i}Kif for each f in M+(X,F).

This follows by linearity and the fact that
∑

i∈Y 1Bi = 1:

Pf =
∑

i∈Y
P(f1Bi) =

∑
i∈Y

(PBi)(Kif).

The moral: In the case where T takes on only finitely (or countably)
many different values the conditional distributions can be defined (in
elementary fashion) by taking ratios.

(iii) Find PBf for f ∈M+(X,A).

Solution: If you could fight your way through all the abstractions
you might remember that PBf is just a function F in M+(X,B) for
which

P(fG) = P(FG) for each G in M+(X,B).

The function F must be of the form
∑

i∈Y βi1{x ∈ Bi}. The general
G is representable as

∑
i∈Y αi1{x ∈ Bi}. Thus we need∑

i∈Y
αiβiPBi = P(FG) = P(fG) =

∑
i∈Y

αiP(f1Bi).

By considering cases where only one of the αi’s is non-zero you can
check that the solution for F is given by

βi =

{
P(f1Bi)/PBi if PBi 6= 0
arbitrary if PBi = 0.

The only ambiguity in the choice of F comes from its values on sets Bi
with PBi = 0. In short, F (x) :=

∑
i∈Y 1{x ∈ Bi}Kif is one of



the P-equivalence class of M+(X,B) functions that can play the role
of (PBf)(x).

In class I tried to argue that we don’t really need the Kolmogorov
abstraction when a conditional probability distribution exists. This
problem was my attempt to provide some clarification.

If, as in this problem, a conditional distribution exists then the
function κ(y, f) := Kx

y f(x), the expected value of f with respect to
the conditional distribution, can be taken as the conditional expecta-
tion P(f | T = y). The Kolmogorov construction for κ(y, f) provides
a function with analogous properties to Kyf . The construction is
most useful as a substitute for ‘expectations with respect to condi-
tional distributions’ when the full conditional distribution does not
exist. The Kolmogorov conditional expectation, P(f | T ) or PBf ,
as a function on X is defined as κ(Tx, f). It corresponds to writ-
ing Qyg(y)κ(y, f) as Pg(Tx)κ(Tx, f).

Note that chaos ensues in the current problem if you write κ(Tx, f)
as Kx

Txf(x), because the dummy variable of integration, x, is now
confused with the argument of the T . It would be a lot like defining
a function on R by

H(y) =

∫ 1

0
(y + x)2dx = y2 + y + 1/3

then evaluating H at y = cos(x) to get H(cosx) = cos2 x+cosx+1/3.
You would get something quite different from the integral∫ 1

0
(cos(x) + x)2dx.

Instead of a function of x you now have a single real number. It is,
however, true that

H(cosx) =

∫ 1

0
(cos(x) + z)2dz,

in the same way that κ(Tx, f) = Kz
Txf(z).

*[2] (Neyman factorization theorem cf. UGMTP Example 5.31) Suppose (Ω,F,P)
is a probability space and {Pθ : θ ∈ Θ} is a set of probability measures on F

with each Pθ absolutely continuous with respect to P. Suppose also that G is
a sub-sigma-field of F and that Pθ has density

p(ω, θ) = gθ(ω)h(ω) with gθ ∈M+(Ω,G) for each θ

for a fixed h ∈M+(Ω,F) that doesn’t depend on θ. That is, Pθf = P (gθ(ω)h(ω)f(ω))
for each f in M+(Ω,F).



Let H be a function (unique up to P-equivalence) in M+(Ω,G) for which

Pg(ω)h(ω) = Pg(ω)H(ω) for each g in M+(Ω,G).

(That is H is a possible choice for P(h | G).)

Solution: Remember that

PGh = H(ω) a.e. [P]<1>

PG(Xh) = γ(ω) a.e. [P]<2>

That is, both H and γ are in M+(Ω,G) and

P(hg) = P(Hg)<3>

P(Xhg) = P(γg)<4>

for every g in M+(Ω,G).

(i) Show that Pθ{H = 0} = 0 for each θ.

Solution:

Pθ{H = 0} = Ph(ω)gθ(ω){H(ω) = 0} density

= PH(ω)gθ(ω){H(ω) = 0} by <3> with g = gθ{H(ω) = 0}
= 0 because H(ω){H(ω) = 0} = 0 for every ω.

(ii) Show that Pθ{H =∞} = 0 for each θ. Hint: Start by showing that

1 ≥ nPgθ1{H(ω) =∞} for each n ∈ N.

What does that tell you about gθ(ω)1{H(ω) =∞}?
Solution:

1 ≥ Pθ{H =∞}
= Pgθh{H =∞} density

= PgθH{H =∞} by <3> with g = gθ{H =∞}
≥ Pgθn{H =∞} because H ≥ n on {H =∞}.

Divide both sides of the inequality by n then let n tend to∞ to deduce
that Pgθ{H =∞} = 0. It follows that gθ{H =∞} = 0 a.e. [P] which
implies that gθ(ω)h(ω){H(ω) = ∞} = 0 a.e. [P]. Integrate with
respect to P to get

0 = Pgθ(ω)h(ω){H(ω) =∞} = Pθ{H =∞}.

(iii) For each X in M+(Ω,F) and some fixed choice of γ of P(Xh | G) define

Y (ω) =
γ(ω)

H(ω)
1{0 < H <∞}.



Show that Pθ(X | G) = Y a.e [Pθ] for every θ.

Solution: You needed to show that Y ∈M+(Ω,G) and

<5> Pθ(XG) = Pθ(Y G) for each G in M+(Ω,G).

The ratio of two G-measurable functions is G-measurable provided
there are no ∞/∞ or 0/0 problems. For Y the indicator function in
the definition eliminated those pesky cases. For <5>, start from the
right-hand side.

Pθ(Y G) = P (gθhY G) density

= P(gθHYG) by <3>

= P(gθγ{0 < H <∞}G) definition of HY

= P(gθXh{0 < H <∞}G) by <4>

= Pθ(X{0 < H <∞}G).

Parts (i) and (ii) show that the last expression is unchanged if we
add the Pθ-negligible terms XG{H = 0} and XG{H = ∞} to the
final integrand.


