CHAPTER 1V

Convergence in Distribution in
Metric Spaces

- .. in which that theory from Chapter ITI depending only on the metric space
properties of IR* is extended to general metric spaces. It is argued that the theory
should consider not just borel-measurable random elements. A Continuous
Mapping Theorem and an analogue of the almost sure Representation Theorem
survive the generalization. A compactness condition—uniform tightness—is
shown to guarantee existence of cluster points of sequences of probability
measures.

IV.1. Measurability

We write a statistic as a functional on the sample paths of a stochastic
process in order to break an analysis of the statistic into two parts: the study
of continuity properties of the functional; the study of the stochastic process
as a random element of a space of functions. The method has its greatest
appeal when many different statistics can be written as functionals on the
same process, or when the process has a form that suggests a simple ap-
proximation, as in the goodness-of-fit example from Chapter L. There we
expressed various statistics as functionals on the empirical process U, which
defines a random element of D[0, 1]. Doob’s heuristic argument suggested
that U, should behave like a brownian bridge, in some distributional sense.

Formalization of the heuristic, the task we embark upon in this chapter,
requires a notion of convergence in distribution for random elements of
D[0, 1]. As for euclidean spaces, the definition will involve convergence of
expectations of bounded, continuous functions of the processes. For this
we need a notion of distance. Equip D[0, 1] with its uniform metric, which
assigns the maximum separation

lx = yll = sup|x(z) — ¥(®)

as the distance between x and y. We shall find it easiest to prove convergence
in distribution of {U,} using this metric, even though it does create some
minor measurability difficulties. Chapter VI will examine another metric,
for which these difficulties disappear, at the cost of greater topological
complexity.

An expectation IPf(U,) is well defined only when f(U,) is measurable. If
U, lives on a probability space (Q, &, IP), we can arrange for measurability
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by equipping D[0, 1] with a o-field, £ say, then checking &/#-measurability
of U, and #-measurability of . The borel o-field will not be the best choice for
2. The definition of convergence in distribution for random elements of a
general metric space anticipates this complication for D[0, 1].

1 Definition. An £/.o/-measurable map X from a probability space (Q, &, IP)
into a set & with o-field < is called a random element of &.

If Z is a metric space, the set of all bounded, continuous, .«7/%Z(IR)-
measurable, real-valued functions on & is denoted by €(Z'; &).

A sequence {X,} of random elements of & converges in distribution to a
random element X, written X, ~ X, if IPf(X,) > IPf(X) for each f in
CX; ).

A sequence {P,} of probability measures on ./ converges weakly to P,
written P, ~ P, if P, f — Pf for every f in €(X ; o). 4

The borel o-field #(Z), the o-field generated by the closed sets, will
always contain /. For those spaces where we need &/ strictly smaller than
the borel o-field, we will usually have it generated by the collection of all
closed balls in Z. Also the trace of &/ on each separable subset of & will
coincide with the trace of the borel o-field on the same subset. Limit distri-
butions will always be borel measures concentrating on separable, o/-
measurable subsets of . We could build these properties into the definition
of weak convergence, but it would neither save us any extra work, nor
simplify the theory much.

2 Example. If D[0, 1] is equipped with the borel o-field % generated by the
closed sets under the uniform metric, the empirical processes {U,} will not
be random elements of D[0, 1] in the sense of Definition 1. That is, U, is not
&/%B-measurable.

Consider, for example, the situation for a sample of size one. (Problem 1
extends the argument to larger sample sizes.) For each subset 4 of [0, 1]
define

G4 = {x € D[0, 1]: x has a jump at some point of A4}.

Each G, is open because | x(f) — x(t —)| depends continuously upon x, for
fixed t. If U, were &/%-measurable, the set {U, € G,} = {¢; € A}-would
belong to &. A probability measure u could be defined on the class of all
subsets of [0, 1] by setting u(4) = IP{¢, € A}. This u would be an extension
of the uniform distribution to all subsets of [0, 1]. Unfortunately, such an
extension cannot coexist with the usual axioms of set theory (Oxtoby 1971,
Section 5): if we wish to retain the axiom of choice, or accept the continuum
hypothesis, we must give up borel measurability of U,. The borel o-field
generated by the uniform metric on D[0, 1] contains too many sets.

There is a simple alternative to the borel o-field. For each fixed t, the
map U,(-, t) from Q into R is a random variable. That is, if =, denotes the
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coordinate projection map that takes a function x in D[0, 1] onto its value
at t, the composition 7, o U, is §/%(IR)-measurable. Each U, is measurable
with respect to the o-field 2 generated by the coordinate projection maps
(Problem 2). Call £ the projection g-field. Problem 4 shows that £ coincides
with the o-field generated by the closed balls. All interesting functionals on
D[0, 1] are Z-measurable. g

Too large a o-field .« makes it too difficult for a map into & to be arandom
element. We must also guard against too small an .«Z. Even though the metric
on 2 has lost the right to have o/ equal to the borel g-field, it can still demand
some degree of compatibility before a fruitful weak convergence theory will
result. If ¥(Z'; /) contains too few functions, the approximation arguments
underlying the Continuous Mapping Theorem will fail. Without that key
theorem, weak convergence becomes a barren theory. An extreme example
should give you some idea of the worst that might happen.

3 Example. Allow the real line to retain its usual euclidean metric, but change
its o-field to the one generated by the intervals of the form [n, n + 1), with
n ranging over the integers. Call this ¢-field £#. Functions measurable with
respect to # must stay constant over each of the generating intervals. For a
continuous function, this imposes a harsh restriction; continuity at each
integer forces an #-measurable function to be constant over the whole real
line. This completely degrades the weak convergence concept : every sequence
of #-measurable random elements converges in distribution. It bodes ill for
a sensible Continuous Mapping Theorem.

Consider the map H from the disfigured real line into the real real line
(equipped with its usual metric and o-field) defined by Hx = 1if 0 < x <3
and Hx = 0 otherwise. It is a perfectly good %-measurable map, continuous
at the point 1. Apply it to random elements {X,} identically equal to 3, and
X identically equal to 1. Even though X, ~ X in the sense of Definition 1,
{HX,} does not converge in distribution to HX. (]

IV.2. The Continuous Mapping Theorem

Suppose X, ~ X, as o/-measurable random elements of a metric space %,
and let H be an «//2/’-measurable map from & into another metric space
Z'. If H is continuous at each point of an .7-measurable set C with
IP{X € C} = 1, does it follow that HX, ~ HX? That is, does {IPf(HX,)}
converge to IPf(HX) for every f in G(%"; #)?

We found an answer to the analogous question for random vectors in
Section II1.2 by reducing it to an application of the Convergence Lemma.
The same approach works here. We need to prove IPh(X,) — IPh(X) for
every bounded, «/-measurable, real-valued h that is continuous at each
point of C. Were .« equal to the borel o-field Z(%), the proof would go
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through almost exactly as before, with only a few words difference. For borel-
measurable random elements of metric spaces, the theory parallels the theory
in Chapter III very closely, at least as far as the Continuous Mapping
Theorem is concerned. Example 3 warns us that non-borel o-fields require
more careful handling.

With this in mind, let’s rework the Convergence Lemma of Chapter ITJ,
paying more attention to measurability difficulties. To begin with we assume
only that .o/ is a sub-¢-field of Z(Z). Define

4) F ={febX; A): f <h}.

Last time we constructed a countable subfamily of % whose pointwise
supremum achieved the upper bound h at each point of C. Functions in the
subfamily took the form

Ju ) =r A md(x, {h <1})

Continuity of f,, , suffices for borel measurability, but it needn’t imply
of-measurability. We must find a substitute for these functions. This is
possible if we impose a regularity condition, which ensures that the pointwise
supremum of & equals h at each point of C. If C is separable (meaning that
it has a countable, dense subset), we can then extract from & a countable
subfamily having the same supremum as & at each point of C. The regularity
condition will capture the key property enjoyed by f,, ,.

Without loss of generality suppose & > 0. Suppose also that h is continuous
at a point x. Choose r with 0 < r < h(x). Look for an f in & with f(x) > r.
Continuity provides a é > 0 such that h(y) > r on the closed ball B(x, §)
centered at x. If we could find a g in 4(Z; o) with 0 < g < B(x, §) and
g(x) = 1, the function rg would meet our requirements. Notice the
similarity to the topological notion of complete regularity (Simmons 1963,
Section 27). If o/ happened to contain all the closed balls centered at x, a
property enjoyed by the projection o-field on D[0, 1] (Problem 4), the
function

() g(y) =1 — o7 d(x, »)]*

would do, because {g > 1 — s} = B(x, s8). For general .« we must postulate
existence of the appropriate g.

To maintain the parallel with euclidean spaces as closely as possible,
strengthen the requirements on g to include uniform continuity. We lose
only a scintilla of generality thereby; the special g of (5) still passes the test.

6 Definition. Call a point x in & completely regular (with respect to the

metric d and the o-field /) if to each neighborhood V of x there exists a

uniformly continuous, .e/-measurable function g with g(x) = 1 and g < V.
O

You might well object to yet another mathematical notion attaining the
status of regularity; the world is already overloaded with instances of
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“regular” as a synonym for “amenable to our current theory.” At least it
has the virtue of reminding us of its topological counterpart. (A more
sadistic author might have called it T3,.) The terminology would not be
wasted if we were to expand our weak convergence theory to cover borel
measures on general topological spaces, for there topological complete
regularity seems just the thing needed for a well-behaved theory.

7 Convergence Lemma. Let h be a bounded, of-measurable, real-valued
JSunction on Z. If his continuous at each point of some separable, o/ -measurable
set C of completely regular points, then:

(1) X, ~ X and IP{X € C} = 1 imply PPh(X,) — IPh(X);

(i} P, ~» P and PC = 1 imply P,h — Ph.

PROOF. As the arguments for both assertions are quite similar, let us prove (ii)
only. Assume that # > 0 (add a constant to h if necessary). Define & as in
(4), but with the continuity requirement strengthened to uniform con-
tinuity. At those completely regular points of Z where k is continuous, the
supremum of & equals h. This applies to points in C.

Separability of C will enable us to extract a suitable countable subfamily
from #. Argue as for the classical Lindelsf theorem (Simmons 1963, Section
18). Let C, be a countable, dense subset of C. Let {g,, g,, ...} be the set of
all those functions of the form rB, with r rational, B a closed ball of rational
radius centered at a point of Cy, and rB < f for at least one f in & For each
g: choose one f satisfying the inequality g; < f. Denote it by f;. This picks out
the required countable subfamily:

(8) sup f; =sup % onC.

To see this, consider any point z in C and any f in %. For each rational
number r such that f(z) > r > 0 choose a rational ¢ for which f > r at all
points within a distance 2¢ of z. Let B be the closed ball of radius ¢ centered
at a point x of C for which d(x, z) < e. The function rB lies completely
below f; it must be one of the {g;}. The corresponding f; takes a value greater
than r at z. Assertion (8) follows.
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Complete the argument as for the Convergence Lemma of Section III.2.
Assume without loss of generality that f; T h at points of C. Then

liminf P,h > liminf P, f; for each i
= Pf; because P, ~ P
— Ph asi— co, by monotone convergence.

Replace h by —h + (a big constant) to get the companion inequality for the
limsup. L

9 Corollary. If IPf(X,) > IPf(X) for each bounded, uniformly continuous,
&/ -measurable f, and if X concentrates on a separable set of completely
regular points, then X, ~ X. O

The corollary flows directly from the decision to insist upon uniformly
continuous separating functions in the definition of a completely regular
point. As with its counterpart for euclidean spaces, it makes some weak
convergence arguments just a little bit more straightforward than the corre-
sponding arguments with continuous functions.

10 Example. Let & be a space equipped with a ¢-field o and metric d, and
% be a space equipped with a ¢-field % and metric e. Equip & ® # with its
product o-field and the metric ¢ defined by

ol(x, y), (x', )] = max[d(x, x"), e(y, y)].

Suppose X, ~ X, as random elements of Z If IPy concentrates on a separable
set of completely regular points, and ¥, — y, in probability for some fixed
completely regular point y, in %, then (X,, Y,) ~ (X, y,), asrandom elements
of the product space  ® #.

Of course the assertion only makes sense if X, and Y, are defined on the
same probability space. Given that prerequisite, measurability with respect to
the product o-field presents no problem, because

(Xm Y;l)_l(A ® B) = (Xn_ IA) N (Yn_ 1B)a
and similarly for (X, y,).

Write C for the separable set on which IPy concentrates. Then Py
concentrates on the product set C ® {y,}, which is separable. Each point
of this set is completely regular: if f(¢) = 1 and f = 0 outside the ball of
d-radius ¢, and g(y,) = 1 and g = 0 outside a ball of e-radius &, then the
product f(x)g(y) equals 1 at (c, y,) and vanishes outside a ball of g-radius &.
The product is uniformly continuous if both f and g are bounded and uni-
formly continuous; it is &/ ® %-measurable if f is «/-measurable and g is
Z-measurable.

By virtue of Corollary 9, to prove (X,, ¥,) ~ (X, y,) we have only to
check that IPAW(X,, Y,) —» IPh(X, y,) for each bounded, uniformly con-
tinuous, &/ ® #-measurable, real function h on ¥ ® #. Given ¢ > 0 choose
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6 > 0'so that |A(x, y) — h(x', y)| < & whenever o[(x, y), (x', ¥)] < 6. Write
k(-) for the bounded, uniformly continuous, .«/-measurable function h(-, yo)-
Then

|PA(X,, Y,) — PH(X, yo)| < & + 2| IP*{e(Y,, yo) > 6}
+ |IPk(X,) — IPk(X)|.
Convergence in probability of Y, to y, makes the middle term converge to
zero. (Notice the outer measure IP*. By definition, IP*Z equals the infimum
of IPW over all &-measurable real functions with W > Z. For most applica-

tions e(-, y,) will be .«/-measurable, in which case IP* can be replaced by IP.)
The last term converges to zero because X, ~ X. O

11 Example (Convergence in Distribution via Uniform Approximation).
Let X, X, X,,... be random elements of & with IPy concentrated on a
separable set of completely regular points. Suppose, for each ¢ > 0 and
0 > 0, there exist approximating random elements 4X, AX,, AX,, ...such
that:

@) IP*{d(X, AX) = 6} < ¢;
(i) limsup IP*{d(X,, AX,) = &} < ¢;
(iii)) AX, ~ AX.
Then X, ~ X. Notice again the use of outer measure to guard against non-
measurability.

We have already met a special case of this result in Lemma IIL.11, where
AX, = X, + oY.Inapplications to stochastic processes, the approximations
are typically constructed from the values of the processes at a fixed, finite
set of index points. For such approximations, classical weak convergence
methods can handle (iii). The assumptions (i) and (ii) place restrictions on
the irregularity of the sample paths. Chapter V will take up this idea.

The convergence X, ~ X follows from convergence of expectations for

every bounded, uniformly continuous, .o/-measurable f. If | f(x) — fyi<e
whenever d(x, y) < d then |IPf(X,) — IPf(X)| is less than

PIf(X,) — fAX,)] + |Pf(AX,) — IPf(AX)| + IP| f(AX) — f(X)|.

The convergence (iii) takes care of the middle term. Handle the first term by
splitting it into the contributions from {d(X,, 4X,) > ¢} and its comple-
ment; and similarly for the last term. O

The Convergence Lemma has one other important corollary, the result
that tells us how to transfer convergence in distribution of random elements of
Z to convergence in distribution of selected functionals of those random
clements. For substantial applications turn to Chapter V.

12 Continuous Mapping Theorem. Let H be an .o/ /.<f'-measurable map from
% into another metric space X". If H is continuous at each point of some
separable, s/-measurable set C of completely reqular points, then X, ~ X and
IP{X € C} = 1 together imply HX, ~ HX. O
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IV.3. Representation by Almost Surely
Convergent Sequences

In Section II1.6 we used the quantile transformation to construct almost
surely convergent sequences of random variables representing weakly con-
vergent sequences of probability measures. That method will not work for
probabilities on more general spaces; it even breaks down for IR?. But the
representation result itself still holds.

13 Representation Theorem. Let {P,} be a sequence of probability measures
onametric space. If P, ~ P and P concentrates on a separable set of completely
regular points, then there exist random elements {X,} and X with distributions
{P,} and P such that X,, - X almost surely. O

The new construction makes repeated use of a lemma that can be applied
to any two probability measures P and Q that are close in a weak convergence
sense. Roughly speaking, the idea is to cut up the metric space & into pieces
By, By, ..., B, for which PB; ~ QB, for each i, so that the set B, has small
P measure and each of the other B/’s has small diameter. We use these sets
to construct a random element Y of &, starting from an X with distribution
P.If X lands in B; choose Y in B, according to the conditional distribution
Q(-|B;). For i = 1 this forces Y to lie close to X, because B; doesn’t contain
any pairs of points too far apart. The random element Y has approximately
the distribution Q:

(14) P{Ye A} IP{Ye A|X e B})IP{X € B}

2
i=0
. 0(41B)P(B)

~ Z;JQ(A | B)O(B;)
= Q(4).

A slight refinement of the construction will turn the approximation into an
equality. When applied with Q = P, and partitions growing finer with n, it
will generate the sequence {X,} promised by the Representation Theorem.

15 Lemma. For each ¢ > 0 and each P concentrating on a separable set of
completely regular points, the space & can be partitioned into finitely many
disjoint, s/ -measurable sets By, By, ..., B, such that:

(1) the boundary of each B; has zero P measure (a P-continuity set);
@ii) P(By) < ¢;
(iii) diameter(B;) <2¢ fori=1,2,...,k.
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Proor. Call the separable set C. To each x in C there exists a uniformly
continuous, «/-measurable f with f(x) = 1 and f = 0 for points a distance
greater than ¢ from x. The open sets of the form {f > «}, for 0 < & < 1, are
all «7-measurable and of diameter less than 2¢. At each point on the boundary
of {f > «}, the continuous function f takes the value o. Because P{f =a}
can be non-zero for at most countably many different values of «, there must
exist at least one « for which the probability equals zero. Choose and fix such
an «, then write G(x) for the corresponding set { f > «}. It has diameter less
than 2¢ and is a P-continuity set.

The union of the family of open sets {G(x): x € C} contains the separable
set C. Extract a countable subfamily {G(x;):i=1,2,...} containing C.
(Every open cover of a separable subset of a metric space has a countable
subcover: Problem 5.) Because

P[O G(xi)] 1 P[D G(xi)] > P(O) = 1,

i=1
there exists a k such that

k
P[ G(xi)] >1—e
i=1

Define B; = G(x)\[G(x,) U--- U G(x;_;)] for i=1,...,k and B, =
[G(x,) U --- U G(x)]", a process known to the uncouth as disjointification.
The boundary of B; is covered by the union of the boundaries of the P-
continuity sets G(x,), ..., G(x;). Each B; lies completely inside the cor-
responding G(x;), a set of diameter less than 2¢ if i > 1. O

ProoF oF THEOREM 13. Holding ¢ fixed for the moment, carry out the con-
struction detailed in the proof of the lemma, generating P-continuity sets
By, By, ..., B, as described.

The indicator function of B; is almost surely continuous [P] because it has
discontinuities only at the boundary of B;. So by the Convergence Lemma
P,(B;) - P(B;). When n is large enough, say n > n(e),

(16) PB) > (1 — &)P(B) for i=0,1,... k

Write n,, for n(2™™). Without loss of generality suppose 1 = n, < n, < --- .
For n, <n < n,.,, construct X, using the {B,} partition corresponding to
&n = 27 ™. Notice that B; now depends on n through the value of m.

Let £ be a random variable that has a Uniform(0, 1) distribution in-
dependent of X. If £ < 1 — ¢, and X lands in B;, choose X » according to the
conditional distribution P,(-|B;). So far no B; has received more than its
quota of P, measure, because of (16). The extra probability will be distributed
over the space ' to bring X, up to its desired distribution P,. If ¢ > 1 — ¢,
choose X, according to the distribution g, determined by

k

i=0
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That is,

k
Ha(A) = & " Zo P,(A|B)[P,(B) — (1 — &,)P(B)].
By (16), the right-hand side is non-negative. And clearly u, & = 1.

Except on the set Q,, = {X € B, or £ > 1 — ¢,}, which has measure at
most 2¢,, the random elements X and X, lie within 2¢, of each other.
On the complement of the set {Q,, infinitely often}, the sequence {X,}
converges to X. By the Borel-Cantelli lemma IP{Q,, infinitely often} = 0.

O

The applications of Theorem 13 follow the same pattern as in Section
I11.6. Problems of weak convergence transform into problems of almost sure
convergence, to which the standard tools (monotone convergence, dominated
convergence, and so on) can be applied.

17 Example. Most of the proof of the Convergence Lemma did not use the
full force of almost sure continuity for the function h. To get the inequality
for the liminf we only needed lower-semicontinuity of h at points of C.
(Remember that semicontinuity imposes only half the constraint of con-
tinuity: only a lower bound is set on the oscillations of 4 in a neighborhood
of a point. Problem 9 will refresh your memory on semicontinuity.) The
Representation Theorem gives a quick proof of the same result.

If g is bounded below, lower-semicontinuous, and .«/-measurable (auto-
matic if .o/ equals the borel o-field), then liminf P,g > Pg whenever P, ~ P
with P concentrated on a separable set of completely regular points. To
prove it, switch to almost surely convergent representations. Lower-semi-
continuity at X () plus almost sure convergence of the representing sequence
imply

liminf g(X (w)) = g(X(w)) almost surely.
Take expectations.

liminf P,g = liminf IPg(X,)
> IPg(X) by Fatou’s lemma
= Pg.

A similar inequality holds for upper-semicontinuous, .«/-measurable func-
tions that are bounded above. As a special case,

(18) limsup P, F < PF
for each closed, o/-measurable set F. If inequality (18) holds for all such F
then necessarily P, ~ P (Problem 12). |

19 Example. Let ¢ be a uniformly bounded class of «/-measurable, real
functions on #. Suppose that P, ~ P, with P concentrated on a separable
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set of completely regular points. Suppose also that ¢ is equicontinuous at
almost all points [P] of . That is, for almost all x and each ¢ > 0 there exists
a ¢ > 0, depending on x but not on g, such that |g(y) — g(x)| < ¢ whenever
d(x, y) < 9, for every g in 4. Then

20) sup|P,g — Pg| - 0.
@

This result underlies the success of most of the functions that have been

constructed in the literature to metrize the topology of weak convergence.
To prove (20), represent the probability measures by almost surely

convergent random elements {X,}, then deduce from equicontinuity that

(21) sup [g(X,) — g(X)| - 0 almost surely.
k2

It would be tempting to appeal to dominated convergence to get
sup |IPg(X,) — PPg(X)| < IP sup |g(X,) — g(X)| - O,
K7 2

but that would assume measurability of the supremum in (21). Instead, note
that (20) could fail only if, for some ¢ > 0, there were functions {g,} in %
for which [P,g, — Pg,| > ¢ infinitely often. Apply the dominated conver-
gence argument to the countable family 4, = {g,, g5, ...} to reach a con-
tradiction. O

22 Example (The Bounded-Lipschitz Metric for Weak Convergence).
Suppose that .«/ contains all the closed balls, as in the case of D[0, 1] under
its uniform metric. The function f(-) = r[1 — md(-, z)]*, which serves to
separate z from points outside a small neighborhood of z, has the strong
uniformity property

f(X) = fD] < mr d(x, y).

A function satisfying such a condition, with mr replaced possibly by a
different constant, is called a Lipschitz function. For the proof of the Con-
vergence Lemma, P, f — Pf for each bounded, .o/-measurable Lipschitz
function would have sufficed; convergence for bounded Lipschitz functions
implies weak convergence. From Example 19 we draw a sharper conclusion.

Define .Z to be the set of all .o/-measurable Lipschitz functions for which
| f(x) — f(M] < d(x, y) and sup, | f(x)| < 1. The class .# is equicontinuous
at each point of Z. Every bounded Lipschitz function can be expressed as a
multiple of a function in &,

Define the distance between two probability measures on .o by

AP, Q) = sup{|Pf — Of |: fe Z}.

You can check that A has all the properties required of a metric. If P con-
centrates on a separable set and P, ~ P, the distance A(P,, P) converges to
zero, in obedience to the uniformity result of Example 19. Conversely, the
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convergence of A(P,, P) to zero would ensure that P,f — Pf for each
bounded Lipschitz function f, which, as noted above, implies weak con-
vergence. O

23 Example (The Prohorov Metric for Weak Convergence). Suppose & is
a separable metric space equipped with its borel ¢o-field. For each § > 0 and
each borel subset A of Z define

A = {xeZ:dx, A) < &}

(Visualize the open set 4° as A wearing a halo of thickness 6.) Define the
Prohorov distance between two borel probability measures as

p(P, Q) = inf{§ > 0: PA° + 6 > QA for every A}.

This distance has great appeal for robustniks, who interpret the delta halo
as a way of constraining small migrations of Q mass and the added delta as
insurance against a small proportion of gross changes. To us it will be just
another metric for weak convergence.

It is not obvious that p is symmetric, one of the properties required of a
metric. We need to show that QA4° + 6 > PA for every A, whenever
p(P, Q) < 4. Set B equal to the complement of A%. We know that OB <
PB° + 6. Subtract both sides from 1, after replacing B® by the complement
of A, a larger set. (No point of 4 can be less than § from a point in B.) We
have symmetry.

If p(P, Q) =0 then certainly PF° + 6 > QF for every closed F and
every 6 > 0. Hold F fixed but let ¢ tend to zero through a sequence of values.
The sequence {F°} shrinks to F, giving PF > QF in the limit. Interchange
the roles of P and Q then repeat the argument to deduce that P and Q agree
on all closed sets, and hence (Problem 11) on all borel sets.

For the triangle inequality, suppose that p(P, Q) < ¢ and p(Q, R) < #.
Temporarily set B = A" Then

RA<QA"+n=QB+n<PB +1yn+34d.

Check that A°*" contains B°. Deduce that p(R, P) < n + 6.

Next, show that weak convergence implies convergence in the p metric.
It suffices to deduce that p(P,, P) < 6 eventually if P, ~ P. For each borel
set A define

fa(x) = [1 — 67 d(x, AT
Notice that A% > f, > A. Also, because
| fa(%) — fa)| < 871 d(x, A) — d(p, Al < 671 d(x, v),
the class of all such f, functions is equicontinuous. By Example 19,

sup |P, f4 — Pf4| = 0.
4
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Call this supremum A,.. Then
PA&prAZPan_AnZPnA_An

for every A. Wait until A, < 6 to be able to assert that p(P, P,) < 6.
Finally, if p(P,, P) — O then, for fixed closed F,

limsup P,F < PF® + §

for every & > 0. Let & decrease to zero then deduce from Problem 12 that
P, ~ P. Convergence in the p metric is equivalent to weak convergence. [

IV.4. Coupling

The Representation Theorems of Sections IIL6 and IV.3 both depended
upon methods for coupling distributions P, and P. That is, we needed to
construct random elements X, and X, on the same probability space, such
that X, had distribution P, and X had distribution P. Closeness of P, and
P, in a weak convergence sense, allowed us to choose X, and X close in a
stronger, almost sure sense. This section will examine coupling in more
detail.

A coupling of probability measures P and Q, on a space &, can be realized
as a measure M on the product space ¥ ® &, with X and Y defined by the
coordinate projections. The product measure P ® Q is a coupling, albeit
a not very informative one. More useful are those couplings for which M
concentrates near the diagonal. For example, in the Representation Theorem
we put as much mass as possible on the set {(x, y): d(x, y) < &}.

Roughly speaking, one can construct such couplings in two steps. First
treat the desired property—that as much mass as possible be allocated to a
particular region D in the product space—as a strict requirement. Imagine
building up M slowly by drawing off mass from the P marginal measure and
relocating it within D, subject to a matching constraint: to put an amount §
near (x, y) one must deplete the P supply near x by § and the Q supply near
y by 6. When as much mass as possible has been shifted into D by this method,
forget about the constraint imposed by D. In the second step, complete the
transfer of mass from P into the product space subject only to the matching
constraint. The final M will have the correct marginals, P and Q.

A precise formulation of the coupling algorithm just sketched is easiest
when both P and Q concentrate on a finite set of points. The first step can
be represented by a picture that looks like a crossword puzzie. Label the
points on which Q concentrates as 1, .. ., r; let these correspond to rows of
a two-way array of cells. Similarly, let 1,..., ¢ label both the points on
which P concentrates and the columns of the two-way array. The stack beside
row i represents the mass Q puts on point i, and the stack under column j
represents the mass P puts on j. The unshaded cells correspond to D. The
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aim is to place as much mass as possible in the unshaded cells without
violating the constraint that the total mass in a row or column should not
exceed the amount originally in the marginal stacks.

This formulation makes sense even if the marginal supplies don’t both
correspond to measures with total mass one. In general we could allow any
non-negative masses R(i) and C(j) in the supply stacks for row i and column
J. We would seek a non-negative allocation M(i, j) of as much mass as possible
into the unshaded cells, subject to

Y M@, j) < C() and Y M(,)) < R()

for each i and j. A continuous analogue of the classical marriage lemma (a sort
of fractional polygamy) will give the necessary and sufficient conditions for
existence of an M that turns the inequalities for the columns into equalities.

Treat C and R as measures. Write C(J) for the sum of supply masses in a
set of columns J. Denote by D, the set of rows i for which cell (i, j) belongs
to D for at least one column j in J. It is easy to see that M can have column
marginal C only if R(D;) > C(J) for every J, because the rows in D, contain
all the D-cells in the columns of J. Sufficiency is a little trickier.

24 Allocation Lemma. If R(D;) = C(J) for every set of columns J, then
there exists an allocation M(i, j) into the cells of D such that

Y MG,j) = C() and Y M(,)) < R()

for every i and j.

Proor. Use induction on the number of columns. The result is trivial for

¢ = 1. Suppose it is true for every number of columns strictly less than c.
Construct M by transferring mass from the column margins into D.

Shift mass at a constant rate into each of the D-cells in row . For any mass
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shifted from C(j) into (r, ) discard an equal amount from R(r). If R(r)
becomes exhausted, move on to row r — 1, and so on. Stop when either:

(i) some C(j) is exhausted; or
(ii) one of the constraints R(D;) > C(J) would be violated by continuation
of the current method of allocation.

Here R and C are used as variable measures that decrease as mass is drawn
off; the supply stacks diminish as the allocation proceeds. Notice that the
mass transferred at each step can be specified as the largest solution to a
system of linear inequalities.

If the allocation halts because of (i), the problem is transformed into an
allocation for ¢ — 1 columns. The inductive hypothesis can be invoked to
complete the allocation.

If allocation halts because of (ii), then there must now exist some K for
which R(Dg) = C(K). Continued allocation would have caused R(Dy) <
C(K). The matching-constraint prevents K from containing every column:
the total column supply always decreases at the same rate as the total row
supply. Write K° for the non-empty set of columns not in K.

Kc

If the marginal demands of the columns in K are to be met, the entire
remaining supply R(Dg) must be devoted to those columns. With this
requirement the problem splits into two subproblems: rows in D may match
only mass drawn off from the columns in K; from the rows D% not in Dy,
match mass from the columns in K°. Both subproblems satisfy the initial
assumptions of the lemma. For subsets of K this follows because allocation
halted before R(D;) < C(J) for any J. For subsets of K, it follows from

R(D; n Dy) = R(D; x) — R(Dg)
> C(J v K) - C(K)
= C(J).

Invoke the inductive hypothesis for both subproblems to complete the proof
of the lemma. U
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25 Corollary. If R and C have the same total mass and R(D;) > C(J) for
every J, then the allocation measure M has marginal measures R and C. [

The Allocation Lemma applies directly only to discrete distributions
supported by finite sets. For distributions not of that type a preliminary
discretization, as in the proof of the Representation Theorem, is needed.

26 Example. Let P and Q be borel probability measures on a separable
metric space. The Prohorov distance p(P, Q) determines how closely P
and Q can be coupled, in the sense that p(P, Q) equals the infimum of those
values of € such that

27 P{d(X,Y)>¢} <e
with X having distribution P and Y having distribution Q. We can use the

Allocation Lemma to help prove this.
Half of the argument is easy. From (27) deduce, for every A,
04 =1P{Ye 4}
<IP{XeAd} +P{dX,Y) = ¢}
< PA® + ¢,
whence p(P, Q) < &.

For the other half of the argument suppose p(P, Q) < & Construct X
and Y by means of a two-stage coupling. Apply the method of Lemma 15
twice to partition the underlying space into sets By, By, ..., B, with both
0B, < d and PB, < 0, and diameter(B;) < é fori = 1, ..., k. Choose é as
a quantity much smaller than ¢; it will eventually be forced down to zero
while ¢ stays fixed. The requirement that each B; be a Q- or P-continuity set
is irrelevant to our present purpose.

Set R(i) equal to @B; and C(j) equal to PB;. Into the region D allow only
those cells (i, j), for 1 <i <k and 1 <j < k, whose corresponding B; and
B; contain a pair of points, one in B; and one in B;, a distance < ¢ apart.
Augment the double array by one more row, call it co, whose row stack
contains mass ¢ + 24. Include (o0, 0), ..., (oo, k) in the region D.

BO B1 PN Bk
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The hypotheses of the Allocation Lemma are satisfied. For any collection
of columns J,

C(J) < PB, + P( U Bj)

JA{0}

<5+Q(UBJ.>8+3

J\{0}

<d+ Q( U Bi) + @By + ¢ by definition of D
Dj\{c0}

<6+ RDN\{o}) + 6+ ¢
= R(Dy).

Distribute all the mass from the column stacks into D, as in the Allocation
Lemma. The oo row acts as a temporary repository for the small amount of
mass that cannot legally be shifted into the desired small-diameter cells.
Return the mass in this row to the column stacks, leaving at least 1 — ¢ — 26
of the original C mass in the desired cells.

Strip away the oo row. Allocate the remaining mass in the column stacks
after expanding D to include all cells (i, j), for 0 < i < kand 0 < j < k.

So far we have only decided the allocation of masses M(i, j) between the
cells. Within the cells distribute according to the product measures

MG, j) Q(-1B)® P(:| By.

The resulting M on & ® & has marginal measures P and Q. For example,
within B, the column marginal is

2. M(i, 0)Q(B:| B)P(-| Bo) = P(Bo)P(-| Bo) = P(-Byy).

The M measure concentrates at least 1 — ¢ — 25 of its mass within the
original D, a cluster of cells each of diameter less than & in both row and
column directions. For a point (x, y) lying in a cell (i, j) of this cluster, there
exists points z; and z; with

d(xa Zi) < 5: d(zi, Zj) < &, d(zj, Y) < 5:

which gives d(x, y) < ¢ + 26. Put another way, if X and Y denote the co-
ordinate projections then

P{d(X, Y) > ¢ + 28} < & + 20.

As 6 can be chosen arbitrarily small, and ¢ can be chosen as close to p(P, Q)
as we please, we have the desired result.

Problem 17 gives a condition under which the bound p(P, Q) can be
achieved by a coupling of P and Q. U
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IV.5. Weakly Convergent Subsequences

A reader not interested in existence theorems could skip this section, which
presents a method for constructing measures on metric spaces. The results
will be used in Section V.3 to prove existence of the brownian bridge. The
method will be generalized in Chapter VII.

We saw in Section IIL.6 how to modify the quantile-transformation
construction of the one-dimensional Representation Theorem to turn it
into an existence theorem, a method for constructing a probability measure
as the distribution of the almost sure limit of a sequence of random variables.
We had to impose a uniform tightness constraint to stop the sequence from
drifting off to infinity. The analogous result for probabilities on metric
spaces plays a much more important role than in euclidean spaces, because
existence theorems of any sort are so much harder to come by in abstract
spaces. Again the key to the construction is a uniform tightness property,
which ensures that sequences that ought to converge really do converge.
The setting is still that of a metric space & equipped with a sub-o-field .7 of
its borel o-field.

28 Definitions. Call a probability measure P on «f tight if for every ¢ > 0
there exists a compact set K(g) of completely regular points such that
PK(e) > 1 —¢.

Call a sequence {P,} of probability measures on &7 uniformly tight if for
every ¢ > 0 there exists a compact set K(¢) of completely regular points such
that liminf P,G > 1 — ¢ for every open, «/-measurable G containing K(g).

tl

Problem 7 justifies the implicit assumption of .o/-measurability for the
K(¢) in the definition of tightness; every compact set of completely regular
points can be written as a countable intersection of open, .=/-measurable
sets.

If G is replaced by K(¢), the uniform tightness condition becomes a
slightly tidier, but stronger, condition. It is, however, more natural to retain
the open G. If P, ~ P and P is tight then, by virtue of the results proved in
Example 17, the liminf condition for open G is satisfied; it might not be
satisfied if G were replaced by K(g). More importantly, one does not need
the stronger condition to get weakly convergent subsequences, as will be
shown in the next theorem.

For the proof of the theorem we shall make use of a property of compact
sets:

If {x,} is a Cauchy sequence in a metric space, and if d(x,, K) - 0
for some fixed compact set K, then {x,} converges to a point of K.
This follows easily from one of a set of alternative characterizations of

compactness in metric spaces. As we shall be making free use of these charac-
terizations in later chapters, a short digression on the topic will not go amiss.
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To prove the assertion we have only to choose, according to the definition
of d(x,, K), points {y,} in K for which d(x,, y,) - 0. From {y,} we can
extract a subsequence converging to a point y in K. For if no subsequence
of {y,} converged to a point of K, then around each x in K we could put an
open neighborhood G, that excluded y, for all large enough values of n.
This would imply that {y,} is eventually outside the union of the finite
collection of G, sets covering the compact K, a contradiction. The cor-
responding subsequence of {x,} also converges to y. The Cauchy property
forces {x,} to follow the subsequence in converging to y.

A set with the property that every sequence has a convergent subsequence
(with limit point in the set) is said to be sequentially compact. Every compact
set is sequentially compact. This leads to another characterization of
compactness:

A sequentially compact set is complete (every Cauchy sequence
converges to a point of the set) and totally bounded (for every
positive ¢, the set can be covered by a finite union of closed balls
of radius less than ¢).

For clearly a Cauchy sequence in a sequentially compact K must converge
to the same limit as the convergent subsequence. And if K were not totally
bounded, there would be some positive ¢ for which no finite collection of
balls of radius ¢ could cover K. We could extract a sequence {x,} in K with
Xp+1 at least e away from each of x,, ..., x, for every n. No subsequence of
{x4} could converge, in defiance of sequential compactness.

For us the last link in the chain of characterizations will be the most
important:

A complete, totally bounded subset of a metric space is compact.

Suppose, to the contrary, that {G,} is an open cover of a totally bounded
set K for which no finite union of {G;} sets covers K. We can cover K by
a finite union of closed balls of radius 4, though. There must be at least
one such ball, B, say, for which K n B, has no finite {G,} subcover. Cover
K n B, by finitely many closed balls of radius . For at least one of these
balls, B, say, K n B; n B, has no finite {G;} subcover. Continuing in
this way we discover a sequence of closed balls {B,} of radii {27"} for
which K~ B; n---n B, has no finite {G;} cover. Choose a point x,
from this (necessarily non-empty) intersection. The sequence {x,} is
Cauchy. If K were also complete, {x,} would converge to some x in K.
Certainly x would belong to some G;, which would necessarily contain
B, for n large enough. A single G, is about as finite a subcover as one could
wish for. Completeness would indeed force {G,} to have a finite subcover
for K. End of digression.

29 Compactness Theorem. Every uniformly tight sequence of probability
measures contains a subsequence that converges weakly to a tight borel
measure.
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ProoF. Write {P,} for the uniformly tight sequence, and K, for the compact
set K(g,), for a fixed sequence {¢,} that converges to zero. We may assume
that {K,} is an increasing sequence of sets.

The proof will use a coupling to represent a subsequence of {P,} by an
almost surely convergent sequence of random elements. The limit of these
random elements will concentrate on the union of the compact K, sets; it
will induce the tight borel measure on & to which the subsequence {P,} will
converge weakly.

Complete regularity of each point in K, allows us to cover K, by a collec-
tion of open «/-measurable sets, each of diameter less than ¢,. Invoke
compactness to extract a finite subcover, {U,;: 1 <i < i,}. Define &,
to be the finite subfield of .« generated by the open sets U,;for 1 <k <m
and 1 < i <. '

The union of the fields {«/,} is a countable subfield .« of /. Apply
Cantor’s diagonalization argument to extract a subsequence of {P,} along
which lim P, A exists for each A4 in 7. Write A4 for this limit. It is a finitely
additive measure on the field o/ . Avoid the mess of double-subscripting
by assuming, with no loss of generality, that the subsequence is {P,} itself.

If {P,} were weakly convergent to a measure P we would be able to deduce
that P(interior of 4) < 14 < P(closure of A) for each A in &/ . If we could
assume further that P put zero mass on the boundary of each such A, we
would know the P measure of enough sets to allow almost surely convergent
representing sequences to be constructed as in the Representation Theorem.
Unfortunately there is no reason to expect P to cooperate in this way.
Instead, we must turn to 4 as a surrogate for the unknown, but sought after,
probability measure P.

Since A need not be countably additive, it would be wicked of us to presume
the existence of a random element of 4 having distribution A. We must take
a more devious approach.

We can build a passable imitation of .7 , on the unit interval. Partition
(0, 1) into as many intervals as there are atoms of .o/, making the lebesgue
measure of each interval 4 equal to the A measure of the corresponding 4 in
o |. These intervals generate a finite field .&7, on (0, 1). Partition each atom
Ain </, into as many subintervals as there are atoms of o7, in 4, matching
up lebesgue and A measures as before. The subintervals together generate a
second field <7, on (0, 1), finer than .o7,. Continuing in similar fashion, we
set up an increasing sequence of fields {.7,} on (0, 1) that fit together in the
same way as the fields {«/,} on &. The union of the .&,’s is a countable
subfield 7 , of (0, 1). There is a bijection 4 <> A between .o/ » and & that
preserves inclusion, maps <7, onto .,, and preserves measure, in the sense
that the lebesgue measure of 4 equals A4. The construction ensures that,
if 7 has a Uniform(0, 1) distribution, IP{n e 4} = 14 for every 4 in «,.
The random variable # chooses between the sets in ., in much the same
way as a random element X with distribution P would choose between the
sets in 7.
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By definition of A, there exists an n(k) such that
30) P,A > (1 — g)AA for every A in of, whenever n > n(k).

Lighten the notation by assuming that n(k) = k. (If you suspect these
notational tricks for avoiding an orgy of subsequencing, feel free to rewrite
the argument using, by now, triple subscripting.) As in the proof of the
Representation Theorem, this allows us to construct a random element X,
with distribution P,, by means of an auxiliary random variable ¢ that has a
Uniform(0, 1) distribution independent of #:

For each atom 4 of .«7,,, if # falls in the corresponding 4 of .7, and
<1 —g, distribute X, on A according to the conditional
distribution P,(-|A4). If & > 1 — ¢, distribute X, with whatever
conditional distribution is necessary to bring its overall distribution
up to P,.

We have coupled each P, with lebesgue measure on the unit square.

To emphasize that X, depends on #, £, and the randomization necessary
to generate observations on P,(-| A), write it as X (w, #, £). Notice that the
same # and £ figure in the construction of every X,,.

It will suffice for us to prove that {X,(w, 5, &)} converges to a point
X(w, 1, §) of K, for every w and every pair (y, £) lying in a region of prob-
ability at least (1 — ¢,)?, a result stronger than mere almost sure convergence
to a point in the union of the compact sets {K,}. Problem 16 provides the
extra details needed to deduce borel measurability of X.

For each m greater than k, let G, be the smallest open, .«7,,-measurable
set containing K. Uniform tightness tells us that

A‘Gmk = llminf PnGmk > 1 - 8k9

which implies IP{n € G} > 1 — g. Define G, as the intersection of the
decreasing sequence of sets {G,,} for m = k, k + 1,.... The overbar here
is slightly misleading, because G, need not belong to 7. But it is a borel
subset of (0, 1). Countable additivity of lebesgue measure allows us to deduce
that IP{n € G,} > 1 — ¢,. Notice how we have gotten around lack of count-
able additivity for 4, by pulling the construction back into a more familiar
measure space.

Whenever 7 falls in G, and £ < 1 ~ ¢, which occurs with probability at
least (1 — ¢,), the random elements X, X, ,,... crowd together into a
shrinking neighborhood of a point of K. There exists a decreasing sequence
{4,.} with:

(i) A, is an atom of of,,;
(ii) A4,, is contained in G,,;
(iti) X, (w,n, &) liesin A4,,.

Properties (i) and (iii) are consequences of the method of construction for
X,,; property (ii) holds because G, is a subset of G,. The set G, being the
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smallest open, &/ ,-measurable set containing K, must be contained within
the union of those U, that intersect K. The atom 4,, must lie wholly within
one such U,,;, a set of diameter less than ¢,. So whenever 7 falls in G, and
& <1 — ¢, the sequence {X,,} satisfies:

(1) d(Xm(ws 113 6)5 X"(CO, 71, 5)) S Sm for k S m _<_ n;
(1) d(X (0,1, 8),K) <e¢, fork<m.

As explained at the start of the digression, this forces convergence to a point
X(CO, , é) of Kk' D

NOTES

Any reader uncomfortable with the metric space ideas used in this chapter
might consult Simmons (1963, especially Chapters 2 and 5).

The advantages of equipping a metric space with a o-field different from -
the borel o-field were first exploited by Dudley (1966a, 1967a), who developed
a weak convergence theory for measures living on the o-field generated by
the closed balls. The measurability problem for empirical processes (Example
2) was noted by Chibisov (1965); he opted for the Skorohod metric. Pyke
and Shorack (1968) suggested another way out: X, ~ X should mean
IPf(X,) — IPf(X) for all those bounded, continuous f that make f(X,) and
f(X) measurable. They noted the equivalence of this definition to the defini-
tion based on the Skorohod metric, for random elements of D[0, 1] con-
verging to a process with continuous sample paths.

Separability has a curious role in the theory. With it, the closed balls
generate the borel o-field (Problem 6); but this can also hold without
separability (Talagrand 1978). Borel measures usually have separable
support (Dudley 1967a, 1976, Lecture 5).

Alexandroff (1940, 1941, 1943) laid the foundation for a theory of weak
convergence on abstract spaces, not necessarily topological. Prohorov (1956)
reset the theory in complete, separable metric space, where most probabilistic
and statistical applications can flourish. He and LeCam (1957) proved
different versions of the Compactness Theorem, whose form (but not the
proof) I have borrowed from Dudley (1966a). Weak convergence of baire
measures on general topological spaces was thoroughly investigated by
Varadarajan (1965). Topsee (1970) put together a weak convergence theory
for borel measures; he used the liminf property for semicontinuous functions
(Example 17) to define weak convergence. These two authors made clear
the need for added regularity conditions on the limit measure and separation
properties on the topology. One particularly nice combination —a completely
regular topology and a r-additive limit measure—corresponds closely to my
assumption that limit measures concentrate on separable sets of completely
regular points.

The best references to the weak convergence theory for borel measures on
metric spaces remain Billingsley (1968, 1971) and Parthasarathy (1967).
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Dudley’s (1976) lecture notes offer an excellent condensed exposition of both
the mathematical theory and the statistical applications.

Example 11 is usually attributed to Wichura (1971), although Hajek
(1965) used a similar approximation idea to prove convergence for random
elements of C[0, 1].

Skorohod (1956) hit upon the idea of representing sequences that converge
in distribution by sequences that converge almost surely, for the case of
random elements of complete, separable metric spaces. The proof in Section 3
is adapted from Dudley (1968). He paid more attention to some of the points
glossed over in my proof—for example, he showed how to construct a
probability space supporting all the {X,}. Here, and in Section 5, one needs
the existence theorem for product measures on infinite-product spaces. Pyke
(1969, 1970) has been a most persuasive advocate of this method for proving
theorems about weak convergence. Many of the applications now belong
to the folklore.

The uniformity result of Example 19 comes from Ranga Rao (1962);
Billingsley and Topspe (1967) and Tops¢e (1970) perfected the idea. Not
surprisingly, the original proofs of this type of result made direct use of the
dissection technique of Lemma 15. Prohorov (1956) defined the Prohorov
metric; Dudley (1966b) defined the bounded Lipschitz metric.

Strassen (1965) invoked convexity arguments to establish the coupling
characterization of the Prohorov metric (Example 26). My proof comes
essentially from Dudley (1968), via Dudley (1976, Lecture 18), who introduced
the idea of building a coupling between discrete measures by application of
the marriage lemma. The Allocation Lemma can also be proved by the
max-flow-min-cut theorem (an elementary result from graph theory; for a
proof see Bollobas (1979)). The conditions of my Lemma ensure that the
minimum capacity of a cut will correspond to the total column mass.
Appendix B of Jacobs (1978) contains an exposition of this approach,
following Hansel and Troallic (1978). Major (1978) has described more
refined forms of coupling.

PROBLEMS

[1] Suppose the empirical process U, were measurable with respect to the borel o-field
on D[0, 1] generated by the uniform metric. For each subset 4 of (1, 2) define J ,
as the open set of functions in D[0, 1] with jumps at some pair of distinct points
ty and t, in [0, 1] with ¢, + ¢, in 4. Define a non-atomic measure on the class of
all subsets of (1, 2) by setting p(4) = IP{U, € J ;}. This contradicts the continuum
hypothesis (Oxtoby 1971, Section 5). Manufacture from y an extension of the
uniform distribution to all subsets of (1, 2) if you would like to offend the axiom
of choice as well. Extend the argument to larger sample sizes.

[2] Write o for the o-field on a set 4 generated by a family {f;} of real-valued func-
tions on % That is, .o is the smallest o-field containing f; *B for each i and each
borel set B. Prove that a map X from (Q, &) into & is &/.«/-measurable if and only
if the composition f; o X is &/%(IR)-measurable for each i.
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(3]

(4]

(5]

(6]

(7]

(8]

9]

(10]

[11]

Every function in D[0, 1] is bounded: [x(¢t,)| = oo as n — co would violate either
the right continuity or the existence of the left limit at some cluster point of the
sequence {t,}.

Write £ for the projection o-field on D[0, 17 and 4, for the o-field generated by
the closed balls of the uniform metric. Write r, for the projection map that takes
an x in D[0, 1] onto its value x(¢).

(a) Prove that each 7, is #-measurable. [Express {x: m,x > a} as a countable
union of closed balls B(x,, n), where x, equals « plus (n + n~!) times the
indicator function of [, t 4+ n~').] Deduce that %, contains &

(b) Prove that the o-field £ contains each closed ball B(x, r). [Express the ball
as an intersection of sets {z: |m,x — m,z] < r}, with ¢ rational.] Deduce that
2 contains 4, .

Let {G;} be a family of open sets whose union covers a separable subset C of a
metric space. Adapt the argument of Lemma 7 to prove that C is contained in the
union of some countable subfamily of the {G,}. [This is Lindelsf’s theorem.]

Every separable, open subset of a metric space can be written as a countable union
of closed balls. [Rational radii, centered at points of the countable dense set.]
The closed balls generate the borel o-field on a separable metric space.

Every closed, separable set of completely regular points belongs to 7. [Cover it
with open, &/-measurable sets of small diameter. Use Lindelof’s theorem to
extract a countable subcover. The union of these sets belongs to .«7. Represent the
closed set as a countable intersection of such unjons.]

Let C,, be the countable subset of C[0, 1] consisting of all piecewise linear func-
tions with corners at only a finite set of rational pairs (t;, r;). Argue from uniform
continuity to prove that C[0, 1] equals the closure of C,. Deduce that C[0, 1]
is a projection-measurable subset of D[0, 1].

A function / is said to be lower-semicontinuous at a point x if, for each M < h(x),
h is greater than M in some neighborhood of x. To say h is lower-semicontinuous
means that it is lower-semicontinuous at every point. Show that the upper envelope
of any set of continuous functions is lower-semicontinuous. Adapt the construction
of Lemma 7 to prove that every lower-semicontinuous function that is bounded
below can be represented on a separable set of completely regular points as the
pointwise limit of an increasing sequence of continuous functions. How would one
define upper-semicontinuity? Which sets should have upper-semicontinuous
indicator functions? What does a combination of both semicontinuities imply?

If X, ~ X as random elements of a metric space & and d(X,, ¥,) — 0 in prob-
ability, then ¥, ~ X, provided that IPy concentrates on a separable set of completely
regular points. [Convergence in probability means IP*{d(X,, ¥,) > &} — 0 for
each ¢ > 0.]

Let P be a borel measure on a metric space. For every borel set B there exists an
open G, containing B and a closed F, contained in B with P(G\F,) < ¢ [The
class of all sets with this property forms a o-field. Each closed set has the property
because it can be written as a countable intersection of open sets.] Deduce that
P is uniquely determined by the values it gives to closed sets. Extend the result
to measures defined on the o-field generated by the closed balls.
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[12] Suppose limsup P,F < PF for each ¢losed, .«/-measurable set F. Prove that
P, ~ P by applying the inequalities

ISR < f o< K KOS (2 ik

for each non-negative f in 4(&'; «7). [The summands are identically zero for all
i large enough. Apply the same argument to —f + (a big constant).]

[13] If P,B — PB for each «/-measurable set B whose boundary has zero P measure
then P, ~ P. [Replace the levels i/k of the previous problem by levels ¢, for which
P{f=1}=0]

[14] The functions in 4(Z'; «/) generate a sub-o-field &, of o, A map X from (Q, &)
into % is /% -measurable if and only if f(X) is &/#(IR)-measurable for each fin
CX; A).

[15] (Continued). The trace of %, on any separable set S of completely regular points
of &' coincides with the borel o-field on S. [Sets of the form {f > 0} n S, with f
in G(Z'; o), form a basis for the relative topology on S. Every relatively open
subset of § is a countable union of such sets, by Lindelsf’s theorem.]

[16] (Continued). Let {X,,} be a sequence of &/s/-measurable random elements of &
that converges pointwise to a map X. Prove that X is &/%,-measurable. If X

takes values only in a fixed separable set of completely regular points, then it is
&/B(Z)-measurable.

[17] Let P and Q be tight probability measures on the borel o-field of a separable metric
space Z There exists a coupling for which IP{d(X, Y) > A} < A, where A =
p(P, Q), the Prohorov distance between P and Q. [From Example 26, there exist
measures M, on & ® Z; with marginals P and @, for which

MA(x1):dx, )2 A+n 1} <A+nt.

The sequence {M,} is uniformly tight. The limit of a weakly convergent subse-
quence defines the required coupling. Is separability of & really needed ?]

[18] Let Z be a compact metric space, and 4(2) be the vector space of all bounded,
continuous, real functions on . Let T be a non-negative linear functional on
#(Z) with T1 = 1. These steps show that Tf = Pf for some borel probability
measure P:

(a) Given y > 0 find functions g,, ..., g, in €*(%) with diameter{g, > 0} < 2y
and g; +--- + g, = 1. [Find f, in ¥¥ (%) with f,(x) > 0 and f,(y) = 0 for
d(y, x) > y. Cover K by finitely many open sets {f, > 0}. Standardize the
corresponding functions to sum to one everywhere.]

(b) Choose x; with g,(x;) > 0. Define P, as the discrete probability measure that
puts mass Tg; at x;, for each i. If h belongs to (%), show that [P,h — Th| -0
asy — 0.

(©) Extract a subsequence of {P,} that converges weakly. Show that the limit
measure P has the desired property.



