Written very late at night. Not yet checked. Very tired. Brain imploding. Do not invest money based on the calculations in this handout.

Geometric Brownian motion and the Black-Scholes model

From the handout on the Itô formula, you know that

GBM

$<2>$

$$
S_{t}=\exp \left(\sigma B_{t}+\alpha t\right) \quad \text { with } B \text { a Brownian motion }
$$

then

$$
S_{t}=1+\sigma S \bullet B_{t}+\left(a+\frac{1}{2} \sigma^{2}\right) S \bullet \mathcal{U}_{t} \quad \text { where } \mathcal{U}_{t} \equiv t
$$

In particular if we put $\alpha=\mu-\frac{1}{2} \sigma^{2}$, for a constant μ, then

$$
S_{t}=1+\sigma S \bullet B_{t}+\mu S \bullet \mathcal{U}_{t},
$$

or, in more traditional notation,

$$
d S_{t}=\sigma S_{t} d B_{t}+\mu S_{t} d t \quad \text { or } \quad \frac{d S_{t}}{S_{t}}=\sigma d B_{t}+\mu d t
$$

Over a small time interval, $[t, t+\delta]$ the proportional change $\Delta S / S_{t}$ in S is approximately $N\left(\mu \delta, \sigma^{2} \delta\right)$ distributed.

In the special case where μ is zero, $S_{t}=1+\sigma S \bullet B_{t}$, which is a martingale.
The process S from $<1>$ with $\alpha=\mu-\frac{1}{2} \sigma^{2}$ is called a geometric Brownian motion. It is often used to model a stock price over time.

Notice that I have implicitly standardized the price so that $S_{0}=1$. In effect, S_{t} measures the price relative to the initial price. I will also make another standardization by assuming that the interest rate is zero, so that I don't have to discount future returns or introduce a bond into the calculations.

1. Stochastic integrals with respect to stochastic integrals

To apply the Itô formula in the arbitrage argument in the next section I will need a little piece of the calculus for stochastic integrals, namely
$G \bullet(H \bullet X)=(G H) \bullet X$.
Let me prove the equality only for elementary processes

$$
\begin{aligned}
& G(t, \omega)=\sum_{i=0}^{n} g_{i}(\omega) \mathbb{I}\left\{t_{i}<t \leq t_{i+1}\right\} \\
& H(t, \omega)=\sum_{i=0}^{n} h_{i}(\omega) \mathbb{I}\left\{t_{i}<t \leq t_{i+1}\right\}
\end{aligned}
$$

I postpone to a more rigorous course the formal passage to the limit from the elementary case to a case general enough to handle the process in the next section.

There is no loss of generality in assuming that both G and H are step functions for the same grid (we could always work with a common refinement of the grid for G and the grid for H) and that we wish to establish equality $<2>$ at a grid point (we could always add extra points to the grid). Writing Z for the process $H \bullet X$, we have $Z_{t_{k}}=\sum_{i<k} h_{i} \Delta_{i} X$, so that

$$
\Delta_{k} Z=Z_{t_{k+1}}-Z_{t_{k}}=h_{k} \Delta_{k} X
$$

and

$$
G \bullet Z_{t_{k}}=\sum_{i<k} g_{i} \Delta_{i} Z=\sum_{i<k} g_{i} h_{i} \Delta_{i} X=(G H) \bullet X_{t_{k}},
$$

as asserted.

[§BSpde] 2. The Black-Scholes partial differential equation

Suppose we are trying to price an option that returns an amount $\psi\left(S_{1}\right)$ at time $t=1$, where ψ is a known function, such as $\psi(x)=(x-K)^{+}$with K constant. We might hope that the price at time t would be a function $f\left(S_{t}, t\right)$ of the stock price and time. That is, we could try to find a function f such that the payment of $\mathcal{P}_{t}=f\left(S_{t}, t\right)$ at time t for a return $\psi\left(S_{1}\right)$ at time $t=1$ presents no arbitrage opportunities.

We must have $\mathcal{P}_{1}=\psi\left(S_{1}\right)$, for therwise there is an obvious arbitrage involving buying and selling at time $t=1$.

Assuming suitable smoothess for f, we get via the Itô formula a stochastic integral representation for the price,
price.pde <3>

$$
\mathcal{P}_{t}=f(1,0)+F_{x} \bullet S_{t}+\frac{1}{2} F_{x x} \bullet A_{t}+F_{y} \bullet \mathcal{U}_{t}
$$

where

$$
F_{x}(t)=f_{x}\left(S_{t}, t\right) \quad \text { and } \quad F_{x x}(t)=f_{x x}\left(S_{t}, t\right) \quad \text { and } \quad F_{y}(t)=f_{y}\left(S_{t}, t\right)
$$

and A_{t} is the compensator for $\sigma S \bullet B_{t}$, the martingale part of S_{t}. We know B has compensator \mathcal{U}. And from Lemma 16 on the stochastic integral handout, we know that $\sigma S \bullet B$ has compensator $A_{t}=\left(\sigma^{2} S^{2}\right) \bullet \mathcal{U}$. Thus

$$
F_{x x} \bullet A_{t}=F_{x x} \bullet\left(\left(\sigma^{2} S^{2}\right) \bullet \mathcal{U}\right)=\sigma^{2}\left(F_{x x} S^{2}\right) \bullet \mathcal{U}_{t} \quad \text { by }<2>.
$$

If we denote the as-yet-unknown constant $f(1,0)$ by c_{0} then $<3>$ becomes

$$
\mathcal{P}_{t}-c_{0}=F_{x} \bullet S_{t}+\left(\frac{1}{2} \sigma^{2} F_{x x}+F_{y}\right) \bullet \mathcal{U}_{t}
$$

The final term vanishes if f satisfies the partial differential equation

$$
\frac{1}{2} \sigma^{2} x^{2} f_{x x}(x, y)+f_{y}(x, y)=0
$$

If f also satisfies the boundary condition $f(x, 1)=\psi(x)$ then

$$
\mathcal{P}_{t}-c_{0}=F_{x} \bullet S_{t} \quad \text { and } \quad \mathcal{P}_{1}=\psi\left(S_{1}\right)
$$

Interpret $F_{x} \bullet S_{t}$ as the profit from the trading strategy F_{x} up to time t. The last equation then says that we can arrange to make $\psi\left(S_{1}\right)-c_{0}$ by a trading scheme. If we could obtain $\psi\left(S_{1}\right)$ by paying any price but c_{0} at time $t=0$ then we could make a riskless profit.
pricet $<4>$ Exercise. Show that \mathcal{P}_{t} is the price to pay at time t if there is to be no arbitrage opportunity.

You can learn how to solve the PDE with boundary condition $f(x, 1)=\psi(x)$ by consulting a book such as Wilmott, Howison \& Dewynne (1995, Chapter 5).

[§girsanov]
 3. Change of measure

If you don't like solving PDEs you might prefer a sneakier way to get at the solution, but it depends on some heavier machinery from stochastic calculus.

BMsi $<5>$ Fact. Suppose Z is a random variable that might depend on the whole Brownian motion sample path $B\left(\cdot, \omega\right.$) (in a suitably measurable way). If $\mathbb{E} Z^{2}<\infty$ (or even under some slightly weaker assumptions), there exists a constant C and an (adapted,...) process H such that $Z=C+H \bullet B_{1}$.

REMARK. If you are prepared to tackle some rigorous probability, you will find a fairly self-contained proof in Pollard (2001, Section 9.7). The proof could even be simplified a bit by an appeal to the the Itô formula.

Let me creep up on the main argument with tiny steps.

First you need to know what a change of measure is. If $q(\omega)$ is a nonnegtive random variable, living on a set Ω already equipped with a probability, define

$$
\mathbb{Q} A=\mathbb{E}_{\mathbb{P}}(q(\omega) \mathbb{I}\{\omega \in A\}) \quad \text { for } A \subseteq \Omega
$$

The subscript \mathbb{P} on the expectation will be needed to avoid confusion when we have more than one probability defined on Ω. Provided $\mathbb{E}_{\mathbb{P}} q=1$, the new \mathbb{Q} is a genuine probability. It satisfies all the usual properties, such as

$$
\mathbb{Q}\left(\cup_{n \in \mathbb{N}} A_{n}\right)=\sum_{n \in \mathbb{N}} \mathbb{Q}\left(A_{n}\right) \quad \text { for disjoint events }\left\{A_{n}\right\}
$$

and $\mathbb{Q} \emptyset=0$ and $\mathbb{Q} \Omega=1$. More useful is the formula

$$
\mathbb{E}_{\mathbb{Q}} X=\mathbb{E}_{P}(X q) \quad \text { for a random variable } X
$$

The random variable q is often called the density of \mathbb{Q} with respect to \mathbb{P}.
normalCoM $<6>$ Example. Suppose X_{1}, \ldots, X_{k} are independent random variables with $X_{i} \sim N\left(0, \sigma_{i}^{2}\right)$, under the probability distribution \mathbb{P}. For arbitrary constants $\left\{\alpha_{i}\right\}$ define a new probability, \mathbb{Q}, by means of the density

$$
q=\exp \left(\sum_{i}\left(\alpha_{i} X_{i}-\frac{1}{2} \alpha_{i}^{2} \sigma_{i}^{2}\right)\right)
$$

Recall the formula $\exp \left(\theta \mu+\frac{1}{2} \sigma^{2} \theta^{2}\right)$ for the moment generating function $\mathbb{E} \exp (\theta Z)$ for a random variable Z with a $N\left(\mu, \sigma^{2}\right)$ distribution. Together with the independence of the X_{i} 's under \mathbb{P}, this formula ensures that

$$
\begin{aligned}
\mathbb{E}_{\mathbb{P}} q & =\exp \left(-\sum_{i} \alpha_{i}^{2} \sigma_{i}^{2}\right) \prod_{i} \mathbb{E}_{\mathbb{P}} \exp \left(\alpha_{i} X_{i}\right) \\
& =\exp \left(-\sum_{i} \alpha_{i}^{2} \sigma_{i}^{2}\right) \prod_{i} \exp \left(\frac{1}{2} \alpha_{i}^{2} \sigma^{2}\right)=1
\end{aligned}
$$

The \mathbb{Q} is a genuine probability distribution.
We can calculate the joint moment generating function of X_{1}, \ldots, X_{k} under \mathbb{Q} by a similar argument. For constants $\theta_{1}, \ldots, \theta_{k}$,

$$
\begin{aligned}
\mathbb{E}_{\mathbb{Q}} \exp \left(\sum_{i} \theta_{i} X_{i}\right) & =\mathbb{E}_{\mathbb{P}} \exp \left(\sum_{i} \theta_{i} X_{i}+\sum_{i}\left(\alpha_{i} X_{i}-\frac{1}{2} \alpha_{i}^{2} \sigma_{i}^{2}\right)\right) \\
& =\prod_{i} \mathbb{E}_{\mathbb{P}} \exp \left(\left(\theta_{i}+\alpha_{i}\right) X_{i}-\frac{1}{2} \alpha_{i}^{2} \sigma_{i}^{2}\right) \\
& =\prod_{i} \exp \left(\frac{1}{2}\left(\theta_{i}+\alpha_{i}\right)^{2} \sigma_{i}^{2}-\frac{1}{2} \alpha_{i}^{2} \sigma_{i}^{2}\right) \\
& =\prod_{i} \exp \left(\frac{1}{2} \theta_{i}^{2} \sigma_{i}^{2}+\theta_{i} \alpha_{i} \sigma_{i}^{2}\right)
\end{aligned}
$$

The last expression is a product of moment generating functions for $N\left(\alpha_{i} \sigma_{i}^{2}, \sigma_{i}^{2}\right)$ distributions. Under \mathbb{Q} the random variables X_{1}, \ldots, X_{k} are still independent normals, with the same variances as under \mathbb{P}, but now the means have changed: $\mathbb{E}_{\mathbb{Q}} X_{i}=\alpha_{i} \sigma_{i}^{2}$.

The change-of-measure trick also works for infinite collections of normally distributed random variables.

BMCoM $<7>$ Example. Suppose $\left\{B_{t}: 0 \leq t \leq 1\right\}$ is a standard Brownian motion under \mathbb{P}. For a fixed constant α, define

$$
q(\omega)=\exp \left(\alpha B_{1}(\omega)-\frac{1}{2} \alpha^{2}\right)
$$

Note that $\mathbb{E}_{\mathbb{P}} q=1$ because $B_{1} \sim N(0,1)$ under \mathbb{P}.
If we change the measure to the \mathbb{Q} defined by the density q with respect to \mathbb{P}, we do not change the continuity of the sample paths of B. Suppose $0=t_{0}<t_{1}<\ldots<t_{n+1}=1$ is a grid with corresponding increments $\Delta_{i} B$ for B. Under \mathbb{P} the increments are independent with $\Delta_{i} B \sim N\left(0, \delta_{i}\right)$, where $\delta_{i}=t_{i+1}-t_{i}$. The density q can also be written as

$$
q=\exp \left(\sum_{i=0}^{n}\left(\alpha \Delta_{i} B-\frac{1}{2} \alpha^{2} \delta_{i}\right)\right)
$$

From Example $<6>$ with $\sigma_{i}^{2}=\delta_{i}$, deduce that the increments are again independent under \mathbb{Q} with $\Delta_{i} B \sim N\left(\alpha \delta_{i}, \delta_{i}\right)$, or $\Delta_{i} B-\alpha \delta_{i} \sim N\left(0, \delta_{i}\right)$. The process $\tilde{B}_{t}=B_{t}-\alpha t$ has all the properties needed to characterize it as a Brownian motion under \mathbb{Q}.

Now reconsider the stock prices modelled as a geometric Brownian motion,

$$
S_{t}=\exp \left(\sigma B_{t}+\left(\mu-\frac{1}{2} \sigma^{2}\right) t\right) \quad \text { with } B \text { a Brownian motion under } \mathbb{P} .
$$

If \mathbb{Q} has density

$$
q=\exp \left(-\mu B_{1}-\frac{1}{2} \mu^{2}\right)
$$

with respect to \mathbb{P} then $\tilde{B}_{t}=B_{t}+\mu t$ is Brownian motion under \mathbb{Q} and

$$
S_{t}=\exp \left(\sigma \tilde{B}_{t}-\frac{1}{2} \sigma^{2} t\right) \quad \text { with } \tilde{B} \text { a Brownian motion under } \mathbb{Q} .
$$

With the change of measure we have effectively eliminated the drift coefficient μ. Under \mathbb{Q}, the stock price is a martingale driven by the Brownian motion \tilde{B}.

Once again consider an option that promises to deliver a random amount Z at time $t=1$. The variable could depend of the stock price history in a complicated way. For example, we could contemplate a most exotic option that delivers

$$
Z=\max _{0 \leq t \leq 1} S_{t}-\sum_{j=107}^{233} S_{100 / j}^{2} \sin \left(S_{j / 1000}\right)+\int_{0}^{1} \cos \left(S_{t}^{3}\right) d t
$$

at time $t=1$. What matters most is that Z can also be thought of as a (weird) function of the \tilde{B} sample path: just insert $\exp \left(\sigma \tilde{B}_{t}-\frac{1}{2} \sigma^{2} t\right)$ wherever you see an S_{t} in the definition of Z, for various t. The function also depends on σ, but there is no μ in sight.

The dramatic moment arrives.
Appeal to Fact $<5\rangle$ for the Brownian motion \tilde{B} to express Z as

$$
Z=C+H \bullet \tilde{B}_{1}
$$

for some constant C and some adapted process H. (Maybe you should check that $\mathbb{E}_{\mathbb{Q}} Z^{2}<\infty$ for the Z you have in mind.) If we could trade directly in \tilde{B}, we could interpret $H \bullet \tilde{B}$ as a trading scheme. We need to convert to a scheme trading in the stock price by means of the representation

$$
S_{t}=1+\sigma S \bullet \tilde{B}_{t} \quad \text { under } \mathbb{Q}
$$

The equality $<2>$ again comes to the rescue, if we integrate the process $1 / S_{t}$ with respect to the processes on both sides of the previous display.

$$
\begin{aligned}
(1 / S) \bullet S_{t} & =(1 / S) \bullet 1_{t}+(1 / S) \bullet(\sigma S \bullet \tilde{B})_{t} \\
& =0+\sigma(S / S) \bullet \tilde{B}_{t} \quad \text { cf. increments of a constant process } \\
& =\sigma \tilde{B}_{t} .
\end{aligned}
$$

Similarly,

$$
H \bullet \tilde{B}_{t}=\frac{1}{\sigma} H \bullet((1 / S) \bullet S)_{t}=\frac{1}{\sigma}(H / S) \bullet S_{t}
$$

Write K_{t} for $(1 / \sigma)(H / S)_{t}$. Then we have a trading scheme to recover the amount $Z-C$ at time $t=1$:

$$
Z=C+K \bullet S_{1}
$$

You might be a bit disappointed that you know only how to trade under \mathbb{Q} if in fact you live in the world where \mathbb{P} is in control and S is not a martingale because of that pesky, unknown μ. (You did say that you knew the value of σ, didn't you?)

Not to worry. Think of K as a shorthand for a sequence of elementary processes,

$$
K_{n}(t)=\sum_{j} k_{n, j}(\omega) \mathbb{I}\left\{t_{n, j}<t \leq t_{n, j+1}\right\}
$$

for which $K_{n} \bullet S$ converges to $K \bullet S$. The trading scheme K_{n} can be spelled out as

$$
\text { for each } j \text { : buy } k_{n, j} \text { shares at time } t_{n, j} \text { then sell them at time } t_{n, j+1}
$$

At this point I need to be a little more precise about the sense of the convergence. In fact, I need (and the stochastic calculus gives) convergence in \mathbb{Q} probability:

$$
\mathbb{Q}\left\{\left|K_{n} \bullet S-K \bullet S\right|>\epsilon\right\} \rightarrow 0 \quad \text { as } n \rightarrow \infty, \text { for each } \epsilon>0
$$

nice thing about the relationship between \mathbb{Q} and \mathbb{P}. sequences that converge in \mathbb{Q}-probability also converge (to the same thing) in \mathbb{P}-probability. The idealized trading scheme K is a limit of the elementary schemes K_{n} under both \mathbb{Q} and \mathbb{P}.

Before we leave the \mathbb{Q}-world, note that S and $K \bullet S$ are both martingales under \mathbb{Q}. In particular,

$$
0=\mathbb{E}_{\mathbb{Q}} K \bullet S_{0}=\mathbb{E}_{\mathbb{Q}} K \bullet S_{1}
$$

and hence

$$
\mathbb{E}_{\mathbb{Q}} Z=C
$$

a calculation that we could, in principle, carry out.
Back in the world controlled by \mathbb{P}, we therefore have a trading scheme, K, that delivers the amount $Z-C$ at time $t=1$. We should pay C at time $t=0$ to receive Z at time $t=1$.

In short: to find the price to pay at time $t=0$ for receiving Z at time $t=1$,
(i) Find the probability measure \mathbb{Q} that makes S a \mathbb{Q}-martingale.
(ii) Hope (or invoke some probability theorem to show) that convergence in \mathbb{Q} probability is the same as convergence in \mathbb{P}-probability.
(iii) Calculate the price as $C=\mathbb{E}_{\mathbb{Q}} Z$.

BScall $<8>$ Example. Suppose $Z=\left(S_{1}-K\right)^{+}$, which I believe is the return from the option known as a call with strike price K. Calculate.

$$
C=\mathbb{E}_{\mathbb{Q}} \exp \left(\sigma S_{1}-K\right)^{+}=\mathbb{E}_{\mathbb{Q}}\left(\exp \left(\sigma \tilde{B}_{1}-\frac{1}{2} \sigma^{2}\right)-K\right)^{+}
$$

Under \mathbb{Q}, the random variable $W=\tilde{B}_{1}$ has a standard normal distribution. Also

$$
\exp \left(\sigma W-\frac{1}{2} \sigma^{2}\right) \geq K \text { if and only if } W \geq L:=\frac{1}{\sigma} \log K+\frac{1}{2} \sigma
$$

Write $\bar{\Phi}(t)=1-\Phi(t)$ for the standard normal tail probability. Calculate.

$$
\begin{aligned}
C & =\mathbb{E}_{\mathbb{Q}}\left(\exp \left(\sigma W-\frac{1}{2} \sigma^{2}\right)-K\right) \mathbb{I}\{W \geq L\} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{L}^{\infty} \exp \left(\sigma x-\frac{1}{2} \sigma^{2}-\frac{1}{2} x^{2}\right) d x-K \mathbb{E}_{\mathbb{Q}} \mathbb{I}\{W \geq L\} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{L}^{\infty} \exp \left(-\frac{1}{2}(x-\sigma)^{2}\right) d x-K \bar{\Phi}(L) \\
& =\bar{\Phi}(L-\sigma)-K \bar{\Phi}(L)
\end{aligned}
$$

I sure hope the last expression agrees with the textbooks for the case where $S_{0}=1$ and there is a zero interest rate. Stay tuned for the corrected version with the correct result.

References

Pollard, D. (2001), A User's Guide to Measure Theoretic Probability, Cambridge University Press.
Wilmott, P., Howison, S. \& Dewynne, J. (1995), The Mathematics of Financial Derivatives: a Student Introduction, Cambridge University Press.

