Written very late at night. Not yet checked. Very tired. Brain imploding. Do not invest money based on the calculations in this handout.

Geometric Brownian motion and the Black-Scholes model

From the handout on the Itô formula, you know that

$$S_t = \exp(\sigma B_t + \alpha t)$$
 with *B* a Brownian motion

then

$$S_t = 1 + \sigma S \bullet B_t + (a + \frac{1}{2}\sigma^2)S \bullet \mathcal{U}_t$$
 where $\mathcal{U}_t \equiv t$.

In particular if we put $\alpha = \mu - \frac{1}{2}\sigma^2$, for a constant μ , then

$$S_t = 1 + \sigma S \bullet B_t + \mu S \bullet \mathcal{U}_t,$$

or, in more traditional notation,

$$dS_t = \sigma S_t dB_t + \mu S_t dt$$
 or $\frac{dS_t}{S_t} = \sigma dB_t + \mu dt$.

Over a small time interval, $[t, t+\delta]$ the proportional change $\Delta S/S_t$ in S is approximately $N(\mu\delta, \sigma^2\delta)$ distributed.

In the special case where μ is zero, $S_t = 1 + \sigma S \bullet B_t$, which is a martingale.

The process *S* from <1> with $\alpha = \mu - \frac{1}{2}\sigma^2$ is called a *geometric Brownian motion*. It is often used to model a stock price over time.

Notice that I have implicitly standardized the price so that $S_0 = 1$. In effect, S_t measures the price relative to the initial price. I will also make another standardization by assuming that the interest rate is zero, so that I don't have to discount future returns or introduce a bond into the calculations.

[§GHX] 1. Stochastic integrals with respect to stochastic integrals

To apply the Itô formula in the arbitrage argument in the next section I will need a little piece of the calculus for stochastic integrals, namely

GHX <2>

$$G \bullet (H \bullet X) = (GH) \bullet X.$$

Let me prove the equality only for elementary processes

$$G(t, \omega) = \sum_{i=0}^{n} g_i(\omega) \mathbb{I}\{t_i < t \le t_{i+1}\}$$

$$H(t, \omega) = \sum_{i=0}^{n} h_i(\omega) \mathbb{I}\{t_i < t \le t_{i+1}\}.$$

I postpone to a more rigorous course the formal passage to the limit from the elementary case to a case general enough to handle the process in the next section.

There is no loss of generality in assuming that both *G* and *H* are step functions for the same grid (we could always work with a common refinement of the grid for *G* and the grid for *H*) and that we wish to establish equality $\langle 2 \rangle$ at a grid point (we could always add extra points to the grid). Writing *Z* for the process $H \bullet X$, we have $Z_{t_k} = \sum_{i \le k} h_i \Delta_i X$, so that

$$\Delta_k Z = Z_{t_{k+1}} - Z_{t_k} = h_k \Delta_k X,$$

and

$$G \bullet Z_{t_k} = \sum_{i < k} g_i \Delta_i Z = \sum_{i < k} g_i h_i \Delta_i X = (GH) \bullet X_{t_k},$$

as asserted.

[§BSpde] 2. The Black-Scholes partial differential equation

Suppose we are trying to price an option that returns an amount $\psi(S_1)$ at time t = 1, where ψ is a known function, such as $\psi(x) = (x - K)^+$ with K constant. We might hope that the price at time t would be a function $f(S_t, t)$ of the stock price and time. That is, we could try to find a function f such that the payment of $\mathcal{P}_t = f(S_t, t)$ at time t for a return $\psi(S_1)$ at time t = 1 presents no arbitrage opportunities.

We must have $\mathcal{P}_1 = \psi(S_1)$, for therwise there is an obvious arbitrage involving buying and selling at time t = 1.

Assuming suitable smoothess for f, we get via the Itô formula a stochastic integral representation for the price,

price.pde <3>

$$\mathcal{P}_t = f(1,0) + F_x \bullet S_t + \frac{1}{2}F_{xx} \bullet A_t + F_y \bullet \mathcal{U}_t,$$

where

$$F_x(t) = f_x(S_t, t)$$
 and $F_{xx}(t) = f_{xx}(S_t, t)$ and $F_y(t) = f_y(S_t, t)$

and A_t is the compensator for $\sigma S \bullet B_t$, the martingale part of S_t . We know B has compensator \mathcal{U} . And from Lemma 16 on the stochastic integral handout, we know that $\sigma S \bullet B$ has compensator $A_t = (\sigma^2 S^2) \bullet \mathcal{U}$. Thus

$$F_{xx} \bullet A_t = F_{xx} \bullet \left((\sigma^2 S^2) \bullet \mathcal{U} \right) = \sigma^2 (F_{xx} S^2) \bullet \mathcal{U}_t \qquad \text{by } <2>.$$

If we denote the as-yet-unknown constant f(1, 0) by c_0 then $\langle 3 \rangle$ becomes

$$\mathcal{P}_t - c_0 = F_x \bullet S_t + \left(\frac{1}{2}\sigma^2 F_{xx} + F_y\right) \bullet \mathcal{U}_t$$

The final term vanishes if f satisfies the partial differential equation

$$\frac{1}{2}\sigma^2 x^2 f_{xx}(x, y) + f_y(x, y) = 0$$

If f also satisfies the boundary condition $f(x, 1) = \psi(x)$ then

 $\mathcal{P}_t - c_0 = F_x \bullet S_t$ and $\mathcal{P}_1 = \psi(S_1).$

Interpret $F_x \bullet S_t$ as the profit from the trading strategy F_x up to time t. The last equation then says that we can arrange to make $\psi(S_1) - c_0$ by a trading scheme. If we could obtain $\psi(S_1)$ by paying any price but c_0 at time t = 0 then we could make a riskless profit.

pricet

<4> Exercise. Show that \mathcal{P}_t is the price to pay at time t if there is to be no arbitrage \Box opportunity.

You can learn how to solve the PDE with boundary condition $f(x, 1) = \psi(x)$ by consulting a book such as Wilmott, Howison & Dewynne (1995, Chapter 5).

[§girsanov] **3.** Change of measure

If you don't like solving PDEs you might prefer a sneakier way to get at the solution, but it depends on some heavier machinery from stochastic calculus.

BMsi <5> Fact. Suppose Z is a random variable that might depend on the whole Brownian motion sample path $B(\cdot, \omega)$ (in a suitably measurable way). If $\mathbb{E}Z^2 < \infty$ (or even under some slightly weaker assumptions), there exists a constant C and an (adapted, ...) process H such that $Z = C + H \cdot B_1$.

REMARK. If you are prepared to tackle some rigorous probability, you will find a fairly self-contained proof in Pollard (2001, Section 9.7). The proof could even be simplified a bit by an appeal to the the Itô formula.

Let me creep up on the main argument with tiny steps.

©David Pollard, 2004

First you need to know what a change of measure is. If $q(\omega)$ is a nonnegtive random variable, living on a set Ω already equipped with a probability, define

$$\mathbb{Q}A = \mathbb{E}_{\mathbb{P}}\left(q(\omega)\mathbb{I}\{\omega \in A\}\right) \quad \text{for } A \subseteq \Omega$$

The subscript \mathbb{P} on the expectation will be needed to avoid confusion when we have more than one probability defined on Ω . Provided $\mathbb{E}_{\mathbb{P}}q = 1$, the new \mathbb{Q} is a genuine probability. It satisfies all the usual properties, such as

$$\mathbb{Q}\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \sum_{n\in\mathbb{N}}\mathbb{Q}(A_n) \quad \text{for disjoint events } \{A_n\}$$

and $\mathbb{Q}\emptyset = 0$ and $\mathbb{Q}\Omega = 1$. More useful is the formula

$$\mathbb{E}_{\mathbb{Q}}X = \mathbb{E}_{P}(Xq)$$
 for a random variable X.

The random variable q is often called the density of \mathbb{Q} with respect to \mathbb{P} .

normalCoM <6> Example. Suppose X_1, \ldots, X_k are independent random variables with $X_i \sim N(0, \sigma_i^2)$, under the probability distribution \mathbb{P} . For arbitrary constants $\{\alpha_i\}$ define a new probability, \mathbb{Q} , by means of the density

$$q = \exp\left(\sum_{i} (\alpha_i X_i - \frac{1}{2}\alpha_i^2 \sigma_i^2)\right)$$

Recall the formula $\exp(\theta \mu + \frac{1}{2}\sigma^2 \theta^2)$ for the moment generating function $\mathbb{E} \exp(\theta Z)$ for a random variable Z with a $N(\mu, \sigma^2)$ distribution. Together with the independence of the X_i 's under \mathbb{P} , this formula ensures that

$$\mathbb{E}_{\mathbb{P}}q = \exp\left(-\sum_{i}\alpha_{i}^{2}\sigma_{i}^{2}\right)\prod_{i}\mathbb{E}_{\mathbb{P}}\exp(\alpha_{i}X_{i})$$
$$= \exp\left(-\sum_{i}\alpha_{i}^{2}\sigma_{i}^{2}\right)\prod_{i}\exp(\frac{1}{2}\alpha_{i}^{2}\sigma^{2}) = 1$$

The \mathbb{Q} is a genuine probability distribution.

We can calculate the joint moment generating function of X_1, \ldots, X_k under \mathbb{Q} by a similar argument. For constants $\theta_1, \ldots, \theta_k$,

$$\mathbb{E}_{\mathbb{Q}} \exp\left(\sum_{i} \theta_{i} X_{i}\right) = \mathbb{E}_{\mathbb{P}} \exp\left(\sum_{i} \theta_{i} X_{i} + \sum_{i} (\alpha_{i} X_{i} - \frac{1}{2} \alpha_{i}^{2} \sigma_{i}^{2})\right)$$
$$= \prod_{i} \mathbb{E}_{\mathbb{P}} \exp\left((\theta_{i} + \alpha_{i}) X_{i} - \frac{1}{2} \alpha_{i}^{2} \sigma_{i}^{2}\right)$$
$$= \prod_{i} \exp\left(\frac{1}{2} (\theta_{i} + \alpha_{i})^{2} \sigma_{i}^{2} - \frac{1}{2} \alpha_{i}^{2} \sigma_{i}^{2}\right)$$
$$= \prod_{i} \exp\left(\frac{1}{2} \theta_{i}^{2} \sigma_{i}^{2} + \theta_{i} \alpha_{i} \sigma_{i}^{2}\right)$$

The last expression is a product of moment generating functions for $N(\alpha_i \sigma_i^2, \sigma_i^2)$ distributions. Under \mathbb{Q} the random variables X_1, \ldots, X_k are still independent normals, with the same variances as under \mathbb{P} , but now the means have changed: $\mathbb{E}_{\mathbb{Q}}X_i = \alpha_i \sigma_i^2$.

The change-of-measure trick also works for infinite collections of normally distributed random variables.

BMCoM <7> Example. Suppose $\{B_t : 0 \le t \le 1\}$ is a standard Brownian motion under \mathbb{P} . For a fixed constant α , define

$$q(\omega) = \exp\left(\alpha B_1(\omega) - \frac{1}{2}\alpha^2\right)$$

Note that $\mathbb{E}_{\mathbb{P}}q = 1$ because $B_1 \sim N(0, 1)$ under \mathbb{P} .

If we change the measure to the \mathbb{Q} defined by the density q with respect to \mathbb{P} , we do not change the continuity of the sample paths of B. Suppose $0 = t_0 < t_1 < \ldots < t_{n+1} = 1$ is a grid with corresponding increments $\Delta_i B$ for B. Under \mathbb{P} the increments are independent with $\Delta_i B \sim N(0, \delta_i)$, where $\delta_i = t_{i+1} - t_i$. The density q can also be written as

$$q = \exp\left(\sum_{i=0}^{n} (\alpha \Delta_i B - \frac{1}{2}\alpha^2 \delta_i)\right).$$

©David Pollard, 2004

Version-1 21 April 2004

From Example <6> with $\sigma_i^2 = \delta_i$, deduce that the increments are again independent under \mathbb{Q} with $\Delta_i B \sim N(\alpha \delta_i, \delta_i)$, or $\Delta_i B - \alpha \delta_i \sim N(0, \delta_i)$. The process $\tilde{B}_t = B_t - \alpha t$ has all the properties needed to characterize it as a Brownian motion under \mathbb{Q} .

Now reconsider the stock prices modelled as a geometric Brownian motion,

$$S_t = \exp\left(\sigma B_t + (\mu - \frac{1}{2}\sigma^2)t\right)$$
 with *B* a Brownian motion under \mathbb{P} .

If \mathbb{Q} has density

$$q = \exp\left(-\mu B_1 - \frac{1}{2}\mu^2\right)$$

with respect to \mathbb{P} then $\tilde{B}_t = B_t + \mu t$ is Brownian motion under \mathbb{Q} and

$$S_t = \exp\left(\sigma \tilde{B}_t - \frac{1}{2}\sigma^2 t\right)$$
 with \tilde{B} a Brownian motion under \mathbb{Q} .

With the change of measure we have effectively eliminated the drift coefficient μ . Under \mathbb{Q} , the stock price is a martingale driven by the Brownian motion \tilde{B} .

Once again consider an option that promises to deliver a random amount Z at time t = 1. The variable could depend of the stock price history in a complicated way. For example, we could contemplate a most exotic option that delivers

$$Z = \max_{0 \le t \le 1} S_t - \sum_{j=107}^{233} S_{100/j}^2 \sin(S_{j/1000}) + \int_0^1 \cos(S_t^3) dt$$

at time t = 1. What matters most is that Z can also be thought of as a (weird) function of the \tilde{B} sample path: just insert $\exp(\sigma \tilde{B}_t - \frac{1}{2}\sigma^2 t)$ wherever you see an S_t in the definition of Z, for various t. The function also depends on σ , but there is no μ in sight.

The dramatic moment arrives.

Appeal to Fact $\langle 5 \rangle$ for the Brownian motion \tilde{B} to express Z as

$$Z = C + H \bullet \tilde{B}_1$$

for some constant *C* and some adapted process *H*. (Maybe you should check that $\mathbb{E}_{\mathbb{Q}}Z^2 < \infty$ for the *Z* you have in mind.) If we could trade directly in \tilde{B} , we could interpret $H \bullet \tilde{B}$ as a trading scheme. We need to convert to a scheme trading in the stock price by means of the representation

$$S_t = 1 + \sigma S \bullet B_t$$
 under \mathbb{Q} .

The equality $\langle 2 \rangle$ again comes to the rescue, if we integrate the process $1/S_t$ with respect to the processes on both sides of the previous display.

$$(1/S) \bullet S_t = (1/S) \bullet 1_t + (1/S) \bullet (\sigma S \bullet B)_t$$

= 0 + \sigma(S/S) \ellip \vec{B}_t ext{ cf. increments of a constant process}
= \sigma \vec{B}_t.

Similarly,

$$H \bullet \tilde{B}_t = \frac{1}{\sigma} H \bullet \left((1/S) \bullet S \right)_t = \frac{1}{\sigma} (H/S) \bullet S_t$$

Write K_t for $(1/\sigma)(H/S)_t$. Then we have a trading scheme to recover the amount Z - C at time t = 1:

$$Z = C + K \bullet S_1$$

You might be a bit disappointed that you know only how to trade under \mathbb{Q} if in fact you live in the world where \mathbb{P} is in control and *S* is not a martingale because of that pesky, unknown μ . (You did say that you knew the value of σ , didn't you?)

Not to worry. Think of K as a shorthand for a sequence of elementary processes,

$$K_n(t) = \sum_j k_{n,j}(\omega) \mathbb{I}\{t_{n,j} < t \le t_{n,j+1}\}$$

VERSION-1 21 April 2004

for which $K_n \bullet S$ converges to $K \bullet S$. The trading scheme K_n can be spelled out as

for each j: buy $k_{n,j}$ shares at time $t_{n,j}$ then sell them at time $t_{n,j+1}$

At this point I need to be a little more precise about the sense of the convergence. In fact, I need (and the stochastic calculus gives) convergence in \mathbb{Q} probability:

 $\mathbb{Q}\{|K_n \bullet S - K \bullet S| > \epsilon\} \to 0$ as $n \to \infty$, for each $\epsilon > 0$.

The nice thing about the relationship between $\mathbb Q$ and $\mathbb P$ is: sequences that converge in Q-probability also converge (to the same thing) in P-probability. The idealized trading scheme *K* is a limit of the elementary schemes K_n under both \mathbb{Q} and \mathbb{P} .

Before we leave the \mathbb{Q} -world, note that *S* and *K* • *S* are both martingales under \mathbb{Q} . In particular,

$$0 = \mathbb{E}_{\mathbb{Q}} K \bullet S_0 = \mathbb{E}_{\mathbb{Q}} K \bullet S_1$$

and hence

$$\mathbb{E}_{\mathbb{O}}Z=C,$$

a calculation that we could, in principle, carry out.

Back in the world controlled by \mathbb{P} , we therefore have a trading scheme, K, that delivers the amount Z - C at time t = 1. We should pay C at time t = 0 to receive Z at time t = 1.

In short: to find the price to pay at time t = 0 for receiving Z at time t = 1,

- (i) Find the probability measure \mathbb{Q} that makes *S* a \mathbb{Q} -martingale.
- (ii) Hope (or invoke some probability theorem to show) that convergence in Qprobability is the same as convergence in \mathbb{P} -probability.
- (iii) Calculate the price as $C = \mathbb{E}_{\mathbb{Q}} Z$.

Example. Suppose $Z = (S_1 - K)^+$, which I believe is the return from the option **BScall** $<\!\!8\!\!>$ known as a call with strike price K. Calculate.

$$C = \mathbb{E}_{\mathbb{Q}} \exp(\sigma S_1 - K)^+ = \mathbb{E}_{\mathbb{Q}} \left(\exp(\sigma \tilde{B}_1 - \frac{1}{2}\sigma^2) - K \right)^+.$$

Under \mathbb{Q} , the random variable $W = \tilde{B}_1$ has a standard normal distribution. Also

$$\exp(\sigma W - \frac{1}{2}\sigma^2) \ge K$$
 if and only if $W \ge L := \frac{1}{\sigma} \log K + \frac{1}{2}\sigma$

Write $\overline{\Phi}(t) = 1 - \Phi(t)$ for the standard normal tail probability. Calculate.

$$C = \mathbb{E}_{\mathbb{Q}} \left(\exp(\sigma W - \frac{1}{2}\sigma^2) - K \right) \mathbb{I}\{W \ge L\}$$

= $\frac{1}{\sqrt{2\pi}} \int_{L}^{\infty} \exp(\sigma x - \frac{1}{2}\sigma^2 - \frac{1}{2}x^2) dx - K \mathbb{E}_{\mathbb{Q}} \mathbb{I}\{W \ge L\}$
= $\frac{1}{\sqrt{2\pi}} \int_{L}^{\infty} \exp(-\frac{1}{2}(x - \sigma)^2) dx - K \overline{\Phi}(L)$
= $\overline{\Phi}(L - \sigma) - K \overline{\Phi}(L)$

I sure hope the last expression agrees with the textbooks for the case where $S_0 = 1$ and there is a zero interest rate. Stay tuned for the corrected version with the correct result.

References

- Pollard, D. (2001), A User's Guide to Measure Theoretic Probability, Cambridge University Press.
- Wilmott, P., Howison, S. & Dewynne, J. (1995), The Mathematics of Financial Derivatives: a Student Introduction, Cambridge University Press.

©David Pollard, 2004

Some calculations needed here.