The Itô Formula

In proving Lévy's characterization of Brownian motion, I previewed for you a technique that can be adapted to different purposes. Recall that we considered a smooth function $f(x, y)$ of two arguments, with partial derivatives

$$
f_{x}=\frac{\partial f}{\partial x} \quad \text { and } \quad f_{x x}=\frac{\partial^{2} f}{\partial^{2} x} \quad \text { and } \quad f_{y}=\frac{\partial f}{\partial y}
$$

For a fine grid $\mathbb{G}: 0=t_{0}<t_{1}<\ldots t_{n+1}=1$ and a martingale M with continuous paths, we started from a telescoping sum like

$$
\begin{aligned}
f\left(M_{1}, 1\right)-f\left(M_{0}, 0\right) & =\sum_{i=0}^{n}\left(f\left(M\left(t_{i+1}\right), t_{i+1}\right)-f\left(X_{t_{i}}, t_{i}\right)\right) \\
& \approx \sum_{i=0}^{n}\left(\left(\Delta_{i} M\right) F_{x}\left(t_{i}\right)+\frac{1}{2}\left(\Delta_{i} M\right)^{2} F_{x x}\left(t_{i}\right)+\delta_{i} F_{y}\left(t_{i}\right)\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& \Delta_{i} M=M\left(t_{i+1}\right)-M\left(t_{i}\right) \quad \text { and } \quad \delta_{i}=t_{i+1}-t_{i} \\
& F_{x}(t)=f_{x}\left(M_{t}, t\right) \quad \text { and } \quad F_{x x}(t)=f_{x x}\left(M_{t}, t\right) \quad \text { and } \quad F_{y}(t)=f_{y}\left(M_{t}, t\right) .
\end{aligned}
$$

After taking expectations of both sides, and using the martingale properties of M, we got a simple sum that (we hoped) would converge to an integral as mesh (\mathbb{G}) went to zero.

With the stochastic integral defined, we can now make sense of the limit without taking expectations of both sides. The first sum converges (in probability) to $F_{x} \bullet M_{1}$, and the last sum converges to $\int_{0}^{1} F_{y}(s) d s$.

If we assume that M^{2} has a compensator A, that is, a continuous adapted process with continuous paths, for which $M_{t}^{2}-A_{t}$ is a martingale, then we can replace the $\left(\Delta_{i} M\right)^{2}$ by a $\Delta_{i} A$ in passing to the limit $F_{x x} \bullet A_{1}$. If you are suspicious of the last calculation, please hold your protests until I explain more carefully in Lemma <5> below.

If we take a grid on the interval $[0, t]$ instead of on $[0,1]$, we get one example of the Itô formula:

$$
f\left(M_{t}, t\right)=f\left(M_{0}, 0\right)+F_{x} \bullet M_{t}+\frac{1}{2} F_{x x} \bullet A_{t}+F_{y} \bullet \mathcal{U}_{t} .
$$

Here I am anticipating a generalization by thinking of $\mathcal{U}_{t} \equiv t$ as a stochastic process with continuous paths of bounded variation. Of course $F_{y} \bullet \mathcal{U}_{t}$ is just fancy notation for $\int_{0}^{t} F_{y}(s) d s$.

As suggested by the fancy notation, we can replace the "time process" \mathcal{U}_{t} by any other process V_{t} with continuous paths of bounded variation. The sum $\sum_{i} \delta_{i} F_{y}\left(t_{i}\right)$ in $<1\rangle$ is then replaced by $\sum_{i}\left(\Delta_{i} V\right) F_{y}\left(t_{i}\right)$, which converges to another stochastic integral. The Itô formula then becomes
$<3>$

$$
f\left(M_{t}, V_{t}\right)=f\left(M_{0}, V_{0}\right)+F_{x} \bullet M_{t}+\frac{1}{2} F_{x x} \bullet A_{t}+F_{y} \bullet V_{t},
$$

Of course, you should now understand $F_{x}(t)$ to mean $F_{x}\left(M_{t}, V_{t}\right)$, and so on.
My final generalization comes from replacing the martingale M by a process $X_{t}=$ $M_{t}+W_{t}$, where W_{t} is adapted with continuous paths of bounded variation. Remember that $H \bullet X$ is defined as $H \bullet M+H \bullet W$. The contribution $F_{x} \bullet M_{t}$ gets replaced by $F_{x} \bullet M_{t}+F_{x} \bullet W_{t}=F_{x} \bullet X_{t}$. The most interesting effect appears in the contribution from $\sum_{i}\left(\Delta_{i} X\right)^{2} F_{x x}\left(t_{i}\right)$, because the added term W does not change the quadratic variation.
$<4>$ Theorem. Suppose M is a martingale with continuous paths and both V and W are adapted processes with continuous paths of bounded variation. Define $X_{t}=M_{t}+W_{t}$. Then if $f(x, y)$ is a suitably smooth function,

$$
f\left(X_{t}, V_{t}\right)=f\left(X_{0}, V_{0}\right)=F_{x} \bullet X_{t}+\frac{1}{2} F_{x x} \bullet A_{t}+F_{y} \bullet V_{t},
$$

where A is the compensator for M^{2} and

$$
F_{x}(t)=f_{x}\left(X_{t}, V_{t}\right) \quad \text { and } \quad F_{x x}(t)=f_{x x}\left(X_{t}, V_{t}\right) \quad \text { and } \quad F_{y}(t)=f_{y}\left(X_{t}, V_{t}\right)
$$

and A is the compensator for M^{2}.
Of course I will not give you a completely rigorous proof, but it is not impossibly hard to develop a real proof starting from the analog of $\langle 1\rangle$. The main challenge comes from handling the contribution from the $\left(\Delta_{i} X\right)^{2}$. The following lemma shows why the W does not upset the quadratic variation.
$<5>$ Lemma. Let H be a uniformly bounded, adapted process with continuous sample paths and X be as in Theorem $<4>$. Then

$$
\sum_{i}\left(X\left(t \wedge t_{i+1}\right)-X\left(t \wedge t_{i}\right)\right)^{2} H\left(t_{i}\right) \rightarrow H \bullet A_{t} \quad \text { in probability }
$$

as the mesh of the underlying grid goes to zero.
REMARK. In fact the convergence is uniform on bounded intervals: if we write $Z_{n}(t)$ for the process on the left-hand side, then $\mathbb{P}\left\{\sup _{0 \leq t \leq 1}\left|Z_{n}(t)-H \bullet A_{t}\right|>\epsilon\right\} \rightarrow 0$ for each $\epsilon>0$.

Proof. I will give you a nearly rigorous proof under a stronger set of assumptions, then just sketch the idea for the full proof.

The hypothesis on H means that there exists a constant C for which $|H(t, \omega)| \leq C$ for all t and ω. Let me also assume that for each $\epsilon>0$ there exists a $\delta>0$ for which

$$
\begin{gathered}
\max (|M(s, \omega)-M(t, \omega)|,|A(t, \omega)-A(s, \omega)|,|W(t, \omega)-W(s, \omega)|) \leq \epsilon \\
\text { for all } s \text { and } t \text { with }|s-t| \leq \delta_{\epsilon}
\end{gathered}
$$

Write $\Delta_{i} M$ for $M\left(t_{i+1}, \omega\right)-M\left(t_{i}, \omega\right)$, and so on. Abbreviate $\mathbb{E}\left(\ldots \mid \mathcal{F}_{t_{i}}\right)$ to $\mathbb{E}_{i}(\ldots)$ and $H\left(t_{i}\right)$ to h_{i}. Define $\xi_{i+i}=\left(\Delta_{i} M\right)^{2}-\Delta_{i} A$. Remember that ξ_{i+1} depends only on $\mathcal{F}_{t_{i+1}}$-information and $\mathbb{E}_{i} \xi_{i+1}=0$.

Consider the case where $t=1$. It is enough to show that

$$
\sum_{i}\left(\Delta_{i} X\right)^{2} h_{i}-\sum_{i}\left(\Delta_{i} A\right) h_{i} \rightarrow 0 \quad \text { in probability, as } \operatorname{mesh}(\mathbb{G}) \rightarrow 0
$$

Expand $\left(\Delta_{i} X\right)^{2}-A_{i}$ into

$$
\left(\Delta_{i} M\right)^{2}+2\left(\Delta_{i} M\right)\left(\Delta_{i} W\right)+\left(\Delta_{i} W\right)^{2}-\Delta_{i} A=\xi_{i+1}+2\left(\Delta_{i} M\right)\left(\Delta_{i} W\right)+\left(\Delta_{i} W\right)^{2}
$$

Consider first the contribution from the ξ_{i+1} terms, assuming $\operatorname{mesh}(\mathbb{G}) \leq \delta_{\epsilon}$. Use the fact that $\mathbb{E}_{i} \xi_{i+1}=0$ to kill cross product terms in the expansion of the square of a sum.

$$
\begin{aligned}
\mathbb{E}\left(\sum_{i} h_{i} \xi_{i+1}\right)^{2} & =\sum_{i, j} \mathbb{E}\left(h_{i} h_{j} \xi_{i+1} \xi_{j+1}\right) \\
& =\sum_{i} \mathbb{E}\left(h_{i}^{2} \xi_{i+1}^{2}\right) \quad \text { because } \mathbb{E}_{i} \xi_{i+1}=0 \\
& \leq C^{2} \mathbb{E} \sum_{i}\left(2\left(\Delta_{i} M\right)^{4}+2\left(\Delta_{i} A\right)^{2}\right) \quad \text { cf. }(a+b)^{2} \leq 2 a^{2}+2 b^{2} \\
& \leq C^{2} \mathbb{E} \sum_{i}\left(2 \epsilon^{2}\left(\Delta_{i} M\right)^{2}+2 \epsilon \Delta_{i} A\right) \quad \text { by assumption }<6> \\
& =2 C^{2}\left(\epsilon^{2}+\epsilon\right) \mathbb{E}\left(A_{1}-A_{0}\right) \quad \text { because } \mathbb{E}\left(\left(\Delta_{i} M\right)^{2}-\Delta_{i} A\right)=0 .
\end{aligned}
$$

As $\operatorname{mesh}(\mathbb{G}) \rightarrow$ we have $\epsilon \rightarrow 0$, making $\sum_{i} h_{i} \xi_{i+1}$ converge to zero in probability.
The other two contributions are even easier to handle.

$$
\left|\sum_{i}\left(2\left(\Delta_{i} M\right)\left(\Delta_{i} W\right)+\left(\Delta_{i} W\right)^{2}\right) h_{i}\right| \leq C \sum_{i}\left(2 \epsilon\left|\Delta_{i} W\right|+\epsilon\left|\Delta_{i} W\right|\right) \leq 3 \epsilon C \mathcal{V}(W)
$$

For each ω, the total variation of the sample path $W(\cdot, \omega)$ is bounded. The sum actually converges to zero for each ω as $\operatorname{mesh}(\mathbb{G}) \rightarrow 0$, which implies convergence in probability.

How to handle the general case: The continuity of the sample path $M(\cdot, \omega)$ tells us that $\Delta_{i} M \rightarrow 0$ as $\operatorname{mesh}(\mathbb{G}) \rightarrow 0$, but the rate of convergence might be different for each ω. The simplest way to remove the difficulty is to replace the deterministic grid \mathbb{G}

Some regularity conditions omitted here.
by a grid $0=\tau_{0} \leq \tau_{1} \leq \tau_{2} \leq \ldots$, with each τ_{i} a stopping time and $\tau_{k} \uparrow \infty$ as $k \rightarrow \infty$. Such times can be defined by putting τ_{i+1} equal to the infimum of those $t \geq \tau_{i}$ for which

$$
\max (|M(s, \omega)-M(t, \omega)|,|A(t, \omega)-A(s, \omega)|,|W(t, \omega)-W(s, \omega)|) \geq \epsilon
$$

As ϵ decreases we need to construct new stopping times. Also, we would need to showthat the martingale properties are preserved at stopping times.

REMARK. A process H is said to be locally bounded if there exists a sequence of stopping times $\left\{\sigma_{m}\right\}$ with $\sigma_{m}(\omega) \uparrow \infty$ for each ω and constants C_{m} for which $\sup _{t}\left|H\left(t \wedge \sigma_{m}, \omega\right)\right| \leq C_{m}$. Lemma $<5>$ also works for locally bounded H.
$<7>$ Corollary. Take H identically equal to 1 to deduce that

$$
\sum_{i}\left(X\left(t \wedge t_{i+1}\right)-X\left(t \wedge t_{i}\right)\right)^{2} \rightarrow A_{t}-A_{0} \quad \text { in probability }
$$

as the mesh of the underlying grid goes to zero. The limit is usually denoted by $[X]_{t}$ and is called the quadratic variation of X.
$<8>$ Example. With X and V as in Theorem $<4>$ and a fixed θ and α, define

$$
G_{t}=\exp \left(\theta X_{t}+\alpha V_{t}\right)
$$

By the Itô formula, with $f(x, y)=\exp (\theta x+\alpha y)$,

$$
G_{t}=G_{0}+\theta G \bullet X_{t}+\frac{1}{2} \theta^{2} G \bullet A_{t}+\alpha G \bullet V_{t}
$$

In particular, if we take V equal to A and α equal to $-\theta^{2} / 2$ then $G_{t}=G_{0}+\theta G \bullet X_{t}$. In particular, if we ta
If X is a martingale with compensator A then $\exp \left(\theta X_{t}-\frac{1}{2} \theta^{2} A_{t}\right)$ is also a martingale.

