Suppose $\{X_t : 0 \le t \le 1\}$ a martingale with continuous sample paths and $X_0 = 0$. Suppose also that $X_t^2 - t$ is a martingale. Then X is a Brownian motion.

Heuristics. I'll give a rough proof for why X_1 is N(0, 1) distributed.

First note that the two martingale assuptions give two properties of the increment $\Delta X = X_t - X_s$, for s < t. Write $\mathbb{E}_s(...)$ for expectations conditional on the information, \mathcal{F}_s , up to time *s*. The martingale properties are

$$\mathbb{E}_{s} \left(X_{s} + \Delta X \right) = X_{s}$$
$$\mathbb{E}_{s} \left(X_{s}^{2} + 2(\Delta X)X_{s} + (\Delta X)^{2} - t \right) = X_{s}^{2} - s$$

Using the fact that X_s can be treated like a constant when conditioning on \mathcal{F}_s , we have

$$\mathbb{E}_s \Delta X = 0$$

and

$$\mathbb{E}_{s}(\Delta X)^{2} = t - s - 2X_{s}(\mathbb{E}_{s}\Delta X) = t - s$$

Put another way, for random variables W_1 and W_2 that depend only on information up to time s,

<1>
$$\mathbb{E}(W_1 \Delta X) = 0$$
<2> $\mathbb{E}(W_2(\Delta X)^2) = (t-s)\mathbb{E}W_2$

Let f(x, t) be a smooth function of two arguments, $x \in \mathbb{R}$ and $t \in [0, 1]$. Define

$$f_x = \frac{\partial f}{\partial x}$$
 and $f_{xx} = \frac{\partial^2 f}{\partial^2 x}$ and $f_t = \frac{\partial f}{\partial t}$

Let h = 1/n for some large positive integer n. Define $t_i = ih$ for i = 0, 1, ..., n. Write $\Delta_i X$ for $X(t_i + h) - X(t_i)$. Then

$$\mathbb{E}f(X_1, 1) - \mathbb{E}f(X_0, 0) = \sum_{i < n} \left(\mathbb{E}f(X_{t_i + h}, t_i + h) - \mathbb{E}f(X_{t_i}, t_i) \right)$$
$$\approx \sum_{i < n} \mathbb{E}\left((\Delta_i X) f_X(X_{t_i}, t_i) + \frac{1}{2} (\Delta_i X)^2 f_{XX}(X_{t_i}, t_i) + h f_t(X_{t_i}, t_i) \right)$$

For the *i*th sumand, invoke $\langle 1 \rangle$ with $W_1 = f_x(X_{t_i}, t_i)$ and $\langle 2 \rangle$ with $W_2 = f_{xx}(X_{t_i}, t_i)$, for $s = t_i$ and $t = t_{i+1} = s + h$. The summand simplifies to

$$\frac{1}{2}\mathbb{E}(\Delta_i X)^2\mathbb{E}f_{xx}(X_{t_i}, t_i) + h\mathbb{E}f_t(X_{t_i}, t_i)$$

The sum over the grid then takes the form of an approxiating sum for the integral

$$\int_0^1 \left(\frac{1}{2} \mathbb{E} f_{xx}(X_s, s) + \mathbb{E} f_t(X_s, s) \right) ds$$

If we paid more attention to the errors of approximation we would see that their contributions go to zero as the $\{t_i\}$ grid gets finer. In the limit we have

$$\mathbb{E}f(X_1,1) - \mathbb{E}f(X_0,0) = \mathbb{E}\int_0^t \left(\frac{1}{2}f_{xx}(X_s,s) + f_t(X_s,s)\right) ds$$

Now specialize to the case $f(x, s) = \exp(\theta x - \frac{1}{2}\theta^2 s)$, with θ a fixed constant. By direct calculation,

$$f_x = \theta f(x, s)$$
 and $f_{xx} = \theta^2 f(x, s)$ and $f_t = -\frac{1}{2}\theta^2 f(x, s)$

Thus

$$\mathbb{E}e^{\theta X_1}e^{-\theta^2/2} - 1 = \int_0^1 0 \, ds = 0.$$

That is, X_1 has the moment generating function $\exp(\theta^2/2)$, which identifies it as having a N(0, 1) distribution.