LÉVY's martingale characterization of Brownian motion

Suppose $\left\{X_{t}: 0 \leq t \leq 1\right\}$ a martingale with continuous sample paths and $X_{0}=0$. Suppose also that $X_{t}^{2}-t$ is a martingale. Then X is a Brownian motion.

Heuristics. I'll give a rough proof for why X_{1} is $N(0,1)$ distributed.
First note that the two martingale assuptions give two properties of the increment $\Delta X=X_{t}-X_{s}$, for $s<t$. Write $\mathbb{E}_{s}(\ldots)$ for expectations conditional on the information, \mathcal{F}_{s}, up to time s. The martingale properties are

$$
\begin{aligned}
\mathbb{E}_{s}\left(X_{s}+\Delta X\right) & =X_{s} \\
\mathbb{E}_{s}\left(X_{s}^{2}+2(\Delta X) X_{s}+(\Delta X)^{2}-t\right) & =X_{s}^{2}-s
\end{aligned}
$$

Using the fact that X_{s} can be treated like a constant when conditioning on \mathcal{F}_{s}, we have

$$
\mathbb{E}_{s} \Delta X=0
$$

and

$$
\mathbb{E}_{s}(\Delta X)^{2}=t-s-2 X_{s}\left(\mathbb{E}_{s} \Delta X\right)=t-s
$$

Put another way, for random variables W_{1} and W_{2} that depend only on information up to time s,

$$
\begin{aligned}
\mathbb{E}\left(W_{1} \Delta X\right) & =0 \\
\mathbb{E}\left(W_{2}(\Delta X)^{2}\right) & =(t-s) \mathbb{E} W_{2}
\end{aligned}
$$

Let $f(x, t)$ be a smooth function of two arguments, $x \in \mathbb{R}$ and $t \in[0,1]$. Define

$$
f_{x}=\frac{\partial f}{\partial x} \quad \text { and } \quad f_{x x}=\frac{\partial^{2} f}{\partial^{2} x} \quad \text { and } \quad f_{t}=\frac{\partial f}{\partial t}
$$

Let $h=1 / n$ for some large positive integer n. Define $t_{i}=i h$ for $i=0,1, \ldots, n$. Write $\Delta_{i} X$ for $X\left(t_{i}+h\right)-X\left(t_{i}\right)$. Then

$$
\begin{aligned}
\mathbb{E} f\left(X_{1}, 1\right)-\mathbb{E} f\left(X_{0}, 0\right) & =\sum_{i<n}\left(\mathbb{E} f\left(X_{t_{i}+h}, t_{i}+h\right)-\mathbb{E} f\left(X_{t_{i}}, t_{i}\right)\right) \\
& \approx \sum_{i<n} \mathbb{E}\left(\left(\Delta_{i} X\right) f_{x}\left(X_{t_{i}}, t_{i}\right)+\frac{1}{2}\left(\Delta_{i} X\right)^{2} f_{x x}\left(X_{t_{i}}, t_{i}\right)+h f_{t}\left(X_{t_{i}}, t_{i}\right)\right)
\end{aligned}
$$

For the i th sumand, invoke $<1>$ with $W_{1}=f_{x}\left(X_{t_{i}}, t_{i}\right)$ and $<2>$ with $W_{2}=f_{x x}\left(X_{t_{i}}, t_{i}\right)$, for $s=t_{i}$ and $t=t_{i+1}=s+h$. The summand simplifies to

$$
\frac{1}{2} \mathbb{E}\left(\Delta_{i} X\right)^{2} \mathbb{E} f_{x x}\left(X_{t_{i}}, t_{i}\right)+h \mathbb{E} f_{t}\left(X_{t_{i}}, t_{i}\right)
$$

The sum over the grid then takes the form of an approxiating sum for the integral

$$
\int_{0}^{1}\left(\frac{1}{2} \mathbb{E} f_{x x}\left(X_{s}, s\right)+\mathbb{E} f_{t}\left(X_{s}, s\right)\right) d s
$$

If we paid more attention to the errors of approximation we would see that their contributions go to zero as the $\left\{t_{i}\right\}$ grid gets finer. In the limit we have

$$
\mathbb{E} f\left(X_{1}, 1\right)-\mathbb{E} f\left(X_{0}, 0\right)=\mathbb{E} \int_{0}^{t}\left(\frac{1}{2} f_{x x}\left(X_{s}, s\right)+f_{t}\left(X_{s}, s\right)\right) d s
$$

Now specialize to the case $f(x, s)=\exp \left(\theta x-\frac{1}{2} \theta^{2} s\right)$, with θ a fixed constant. By direct calculation,

$$
f_{x}=\theta f(x, s) \quad \text { and } \quad f_{x x}=\theta^{2} f(x, s) \quad \text { and } \quad f_{t}=-\frac{1}{2} \theta^{2} f(x, s)
$$

Thus

$$
\mathbb{E} e^{\theta X_{1}} e^{-\theta^{2} / 2}-1=\int_{0}^{1} 0 d s=0
$$

That is, X_{1} has the moment generating function $\exp \left(\theta^{2} / 2\right)$, which identifies it as having a $N(0,1)$ distribution.

