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Stochastic integrals

Suppose St denotes the price of a stock at time t , for 0 ≤ t ≤ 1. Let 0 = t0 < t1 < . . . < tn < tn+1 = 1
be times at which you buy and sell stock: at time ti you buy H(ti ) stocks at a cost of H(ti )S(ti ) then you
sell the same stocks at time ti+1 for H(ti )S(ti+1). Your total profit will be∑n

i=0
H(ti )�i S where �i S = S(ti+1) − S(ti ).

This formula is also valid for purchases of random numbers of shares. In that case, H(ti ) should depend
only on information available at time ti , otherwise you might be jailed for insider trading.

It is tempting to think that if the times between trades get smaller and smaller then we get closer and
closer to some limit, an idealized continuous trading, with total profit being given by some sort of limit
of the sums for trading in discrete time. To formalize this idea, we need to define a stochastic integral∫ 1

0 Hsd Ss .

There is a large class of processes for which stochastic integrals can be defined. A complete treatment
usually takes up a large fraction of the graduate course on Stochastic Calculus. However, with enough
handwaving I can explain the main ideas.

Technical terms.

Throughout what follows, the information available up to time t will be denoted by Ft . In rigorous
developments of the theory, Ft is identified with a collection of subsets called a sigma-field. A random
vaiable tha depends only on Ft -information is said to be Ft -measurable. The flow of information
{Ft : 0 ≤ t ≤ 1} is often called a filtration.

A stochastic process {Xt (ω) : 0 ≤ t ≤ 1} is said to be adapted (to the filtration) if Xt depends only
on Ft -information, for each t .

I will denote the conditional expectation E(. . . | Fs) by Es(. . .). Remember that EsY is a random
variable that depends only on Fs for which

E
(
W (Y − EsY )

) = 0 for all W depending only on Fs .

In particular, if {Yt : 0 ≤ t ≤ 1} is a martingale then EsYt = Ys for all s < t , and hence

E
(
W (Yt − Ys)

) = 0 for all W depending only on Fs .

I often remind you of this equality by noting that the increment �Y := Yt − Ys is orthogonal to every W
that depends only on Fs-information.

I will construct stochastic integrals via approximation on a grid, G : 0 = t0 < t1 < . . . < tn < tn+1 = 1.
The quantity mesh(G) is defined to equal maxi (ti+1 − ti ). A grid G1 is said to be a refinement of a
grid G0 if it is obtained by adding extra grid points. If G1 : 0 = t0 < t1 < . . . < tn < tn+1 = 1 and
G2 : 0 = s0 < s1 < . . . < tn < sm+1 = 1 are grids then I will write G1 ∨ G2 for their common refinement,
the grid obtained by arranging all the sj ’s and ti ’s into one increasing sequence. Of course, we need retain
only one copy of duplicate grid points.

In what follows, I have been sloppy about stating regularity conditions. You should not take the
assertions to be true precisely as stated. You would need to take the Stochastic Calculus course if you
wanted to know the truth, almost the whole truth, and hardly anything but the truth.

It is easiest to start with a deterministic case.

1. Functions of bounded variation

Suppose f and g are continuous functions defined on the interval [0, 1]. Remember that the variation
of f over a grid G : 0 = t0 < t1 < . . . < tn < tn+1 = 1 is defined as

V( f, G) =
∑n

i=0
| f (ti+1) − f (ti )|,

c©David Pollard, 2004 –1– Statistics 251/551



Version-3 13 April 2004

and f is said to be of bounded variation if V( f ) = supG V( f, G) is finite.

We might hope that
∫ 1

0 g(t)d f (t) could be obtained as a limit of approximating sums,

I(g, G) =
∑n

i=0
g(ti )�i f where �i f = f (ti+1) − f (ti ).

In fact, such a limit does exist, in the sense that there is number J such that I( f, G) → J as mesh(G)

tends to zero. Of course, the limit J is then denoted by
∫ 1

0 gd f .

<1> Theorem. If g is continuous and f is both continuous and of bounded variation, then there is a
number J for which I(g, G) → J as mesh(G) → 0.

Proof. Continuity of g on a closed interval ensures that for each ε > 0 there exists a δε > 0 such that

<2> |g(t) − g(s)| ≤ ε whenever |t − s| ≤ δε.

Let G0 be a grid with mesh(G0) ≤ δε and let G1 be a refinement of G0.

Consider the contributions to both I(g, G0) and I(g, G1) from the interval [ti , ti+1]. Suppose G1 puts
grid points s0 = ti < s1 < . . . < sk < sk+1 = ti+1 in the interval. The contribution to I(g, G1) from the
interval is ∑k

j=0
g(sj )�j f where �j f = f (sj+1) − f (sj )

The contribution to I(g, G0) is

g(ti )
(

f (ti+1) − f (ti )
) = g(ti )

∑k

j=0
�j f.

The absolute value of the difference between the two contributions is bounded by∑k

j=0
|g(ti ) − g(sj )| |�j f | ≤ ε

∑k

j=0
|�j f | because |ti − sj | ≤ δ.

Summing over all i , we conclude that

|I(g, G0) − I(g, G1)| ≤ εV( f, G1) ≤ εV( f )

Suppose {Gn : n ∈ N} is a sequence of grids with each Gn+1 a refinement of the preceding Gn and
mesh(Gn) → 0. The argument in the previous two paragraphs implies that J = limn I(g, Gn) exists.
(Formal reason: the real numbers I(g, Gn) form a Cauchy sequence.) The limit does not depend on the
choice of the Gn . (Formal reason: if mesh(G) ≤ δε then I(g, G ∨ Gn) lies within ε of both I(g, G)

and I(g, Gn) for n large enough.)�

For the purposes of this handout, there are two important cases where a function f has bounded
variation.

(i) If f is an increasing function on [0, 1] then V( f ) = f (1) − f (0), because∑n

i=0
| f (ti+1) − f (ti )| =

∑n

i=0

(
f (ti+1) − f (ti )

) = f (1) − f (0)

for every grid.

(ii) If f (t) = ∫ 1
0 λ(s) ds, with

∫ 1
0 |λ(s)| ds < ∞ then

∑n

i=0
| f (ti+1) − f (ti )| =

∑n

i=0
|
∫ ti +1

ti

λ(s) ds| ≤
∑n

i=0

∫ ti +1

ti

|λ(s)| ds =
∫ 1

0
|λ(s)| ds.

In this case, it is not hard to show that
∫ 1

0 g(s) d f (s) = ∫ 1
0 g(s)λ(s) ds.

A similar method of approximation could be used to define
∫ t

0 g d f for each t in [0, 1]. A better way
is to build the dependence on t into the approximation, by defining

I(g, G)t =
∑n

i=0
g(ti )

(
f (ti+1 ∧ t) − f (ti ∧ t)

)
.

If t equals ti , we have tj ∧ t = ti for all j ≥ i , which ensures that the all summands for j ≥ i vanish. If
ti < t < ti+1, the i th summand becomes g(ti )

(
f (t) − f (ti )

)
, which is continuous in t . Indeed, the insertion

of the ∧t makes I(g, G)t a continuous function of t . The argument from the proof of Theorem <1> still
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works, leading to the conclusion that
∫ t

0 g d f is a uniform limit of continuous functions, and hence is itself
continuous as a function of t .

By various approximation arguments, the integral can also be extended to integrands g that are not
continuous. I won’t discuss this extension, because we will only need continuous integrands.

2. Stochastic integral for BV processes

Suppose {Xt (ω) : 0 ≤ t ≤ 1} is a stochastic process for which each sample path X (·, ω) is continuous
and of bounded variation. If {Ht (ω) : 0 ≤ t ≤ 1} is another stochastic process with continuous sample
paths, then we can define the stochastic integral pathwise. That is,

∫ t
0 H(s, ω) d X (s, ω) is defined using

the method described above for each ω.

It often helps to think of the stochastic integral as defining a new stochastic process H • X with
continuous sample paths:

(H • X)(t, ω) :=
∫ t

0
Hs(ω) d Xs(ω)

The same notation will reappear in later sections, for stochastic integrals with respect to more complicated
processes.

3. Stochastic integral with respect to Brownian motion

We know that almost all sample paths of a standard Brownian motion {Bt : 0 ≤ t ≤ 1} have
infinite total variation. We cannot expect the method from Section 2 to work to define a stochastic
integral

∫ t
0 Hs(ω) d Bs(ω).

For a smaller class of functions, the definition of the stochastic integral is easy. Suppose H is an
elementary process, that is, for some grid 0 = t0 < t1 < . . . < tn < tn+1 = 1,

H(t, ω) =
∑n

i=0
hi (ω)I{ti < t ≤ ti+1},

where hi is a random variable that depends only on Fti -information (that is, H is adapted). Then we
define

H • Bt :=
∫ t

0
Hs(ω) d Bs(ω) :=

∑n

i=0
hi (ω)

(
B(ti+1 ∧ t, ω) − B(ti ∧ t, ω)

)

=
∑ j−1

i=0
hi (ω)

(
B(ti+1) − B(ti )

) + hj (ω)(B(t) − B(tj )) if tj ≤ t ≤ tj+1.

In the last expression I have omitted some ω argument to fit everything into one line.

Notice that, for a fixed elementary process H , nothing changes if we add extra grid points. For
example, the addition of a new point t̄ with ti < t̄ < ti+1 replaces the summand

hi
(
B(ti+1 ∧ t) − B(ti ∧ t)

)
by two terms,

hi (ω)
(
B(t̄ ∧ t) − B(ti ∧ t)

) + hi (ω)
(
B(ti+1 ∧ t) − B(t̄ ∧ t)

)
,

which leaves H • Bt is unchanged.

The process H • B has continuous sample paths. It also inherits from B the martingale property. For
suppose that s < t and that W depends only on Fs-information. With no loss of generality (as explained
in the previous paragraph), we may assume that both s and t are grid points: s = tj and t = tk . Then

EW
(
H • Bt − H • Bs

) =
∑k−1

i= j
E

(
W hi�i B

)
where �i B = B(ti+1) − B(ti ).

The i th summand vanishes because W hi depends only on Fti -information and Eti �i B = 0.

The martingale properties also lead to a simple expression for the second moment of H • B1.

E
(
H • B1

)2 =
∑n

i=0

∑n

j=0
E

(
hi hj�i B�j B

)2 =
∑n

i=0
E

(
hi�i B

)2 + 2
∑

i< j
E

(
(hi hj�i B)Etj �j B

)
.
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For i < j , the product hi hj�i B depends only on Ftj -information and Etj �j B = 0. All the cross product
contributions have zero expectation. Only the terms with i = j survive, leaving∑n

i=0
E

(
h2

i (�i B)2
) =

∑n

i=0
E

(
(ti+1 − ti )h

2
i

)
because Eti (�i B)2 = ti+1 − ti

= E

∫ 1

0
H(s, ω)2 ds.

I have included the ω argument in the final expression to emphasize the two averagings involved: one
over s and the other over ω.

<3> Definition. For a process {H(t, ω) : 0 ≤ t ≤ 1} define
[]

H
[] =

(
E

∫ 1
0 H(s, ω)2 ds

)1/2
.

More generally, if G is also an elementary process, by taking a common refinement of the G and H
grids we see that G − H is also an elementary process, and hence

<4> E
(
H • B1 − G • B1

)2 = []
H − G

[]2 = E

∫ 1

0

(
H(s, ω) − G(s, ω)

)2
ds.

<5> Definition. Write H2 for the set of adapted processes H for which there exists at least one sequence
of elementary processes {Hn} with

[]
Hn − H

[] → 0.

Equality <4> justifies the definition the stochastic integral H • B for H ∈ H2 as a limit of stochastic
integrals of elementary processes. The proof makes use of an inequality of Doob, which can be proved
using the STL. For a martingale {Mt : 0 ≤ t ≤ 1} with continuous sample paths (actually right continuity
would suffice),

<6> E sup0≤t≤1 |Mt |2 ≤ 4EM2
1

<7> Theorem. There is an extension of the stochastic integral for elementary processeses to a linear map
H 	→ H • B from H2 into the space of all martingales with continuous samples paths such that

<8> E
(
G • B1 − H • B1

)2 = []
G − H

[]2

for all G, H ∈ H2.

Sketch of a proof. Suppose H ∈ H2. By taking a subsequence if necessary, we may suppose that {Hn}
is a sequence of elementary processes for which[]

Hn − H
[] ≤ 2−n for each n.

By inequality <6> applied to the martingale Hn • B − Hn+1 • B,

E sup
0≤t≤1

|Hn • Bt − Hn+1 • Bt | ≤
(

E sup
0≤t≤1

|Hn • Bt − Hn+1 • Bt |2
)1/2

<9>

≤ (
4E|Hn • B1 − Hn+1 • B1|2

)1/2

≤ 2
[]

Hn − Hn+1
[] ≤ 4/2n.

Thus
E

∑
n∈N

sup0≤t≤1 |Hn • Bt − Hn+1 • Bt | < ∞,

which implies that there exists a process {Jt : 0 ≤ t ≤ 1} for which

sup
0≤t≤1

|Hn • Bt (ω) − Jt (ω)| → 0 for each ω in a set �0 with P�0 = 1.

The limit process J inherits continuous sample paths and the martingale property from Hn • B. (I am
ignoring what happens on the set �c

0, which has zero probability.)

By further subsequencing arguments, we could show that the limit process does not depend on the
choice of the sequence of elementary processes. It therefore risks little ambiguity if we write H • B for J .
We could also show, by an another argument starting from <9>, that

E sup0≤t≤1 |Hn • Bt − H • Bt |2 → 0
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Linearity and the isometry property <8> then follow from the analogous properties for stochastic integrals
of elementary processes.�

<10> Example. In a course on stochastic integrals it is almost mandatory to show that B • Bt = 1
2 (B2

t − t).
Notice the extra −t on the right-hand side. Without it, we would not have a martingale because
Es B2

t = B2
s + (t − s) for s < t .

Define simple functions

Hn(t) =
∑n

i=0
B(ti )I{ti < t ≤ ti+1} where ti = i/(n + 1).

Notice that
|Hn(t) − B(t)|2 =

∑n

i=0

(
B(t) − B(ti )

)2
I{ti < t ≤ ti+1}

and ∫ 1

0
E|Hn(t) − B(t)|2 dt =

∑n

i=0

∫ 1

0
|t − ti |I{ti < t ≤ ti+1} = 1

2

n + 1

(n + 1)2
→ 0 as n → ∞.

From Theorem <7>,
E

(
Hn • B1 − B • B1

)2 = []
Hn − B

[]2 → 0.

We have only to calculate Hn • B1 then pass to the limit to find B • B1.

For a fixed n, write �i B for B(ti+1) − B(ti ). Then

(B2
1 − 02) − 2Hn • B1 =

∑n

i=0

(
B(ti+1)

2 − B(ti )
2
) −

∑n

i=0
2B(ti )�i B

=
∑n

i=0
(�i B)2.

From facts about the quadratic variation of Brownian motion, we know that the final sum converges (in
probability) to 1 as n → ∞. It follows that 2B • B1 = B2

1 −1. We could carry out a similar approximation
argument to find B • Bt , but there is an easier way. The stochastic integral is a martingale, which implies

B • Bt = Et (B • B1) = 1
2 Et (B2

1 − 1) = 1
2 (B2

t − t),

as asserted.�

4. Stochastic integral with respect to a (square integrable) martingale

The method for defining stochastic integrals with respect to Brownian motion also works for a more
general martingale {Mt : 0 ≤ t ≤ 1} with continuous sample paths. Suppose that there exists an adapted
process {At : 0 ≤ t ≤ 1} with continuous, increasing sample paths for which

<11> M2
t − At is a martingale.

For a fixed s < t write �M for Mt − Ms and �A for At − As . Then

<12> 0 = Es
(
(Ms + �M)2 − As − �A

) − M2
s + As = Es

(
(�M)2 − �A

)
.

For an elementary process H(t, ω) = ∑n
i=0 hi (ω)I{ti < t ≤ ti+1}, we define

<13> (H • M)t :=
∫ t

0
Hs(ω) d Ms(ω) :=

∑n

i=0
hi (ω)

(
M(ti+1 ∧ t, ω) − M(ti ∧ t, ω)

)
.

Almost the same argument as in Section 3 shows that H • M is a martingale with continuous sample
paths. Moreover,

E
(
H • M1

)2 =
∑n

i=0
E

(
h2

i (�i M)2
)

where �i M = M(ti+1) − M(ti )

=
∑n

i=0
E

(
h2

i �i A
)

by <12>, where �i A = A(ti+1) − A(ti )

= E(H 2 • A1) with H 2 • A defined as in Section 2.

And so on.
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The role of
[]

H
[]2

is taken over by the quantity

[]
H

[]2
A =: E(H 2 • A1) = E

∫ 1

0
H(t, ω)2 d A(t, ω).

It is possible to define H • M for H in the set H2(A) of processes that can be approximated in the
[] · []

A
sense by elementary processes. The resulting stochastic process is again a martingale with continuous
sample paths, for which

<14> E
(
G • M1 − H • M1

)2 = []
G − H

[]2
A

for all G, H ∈ H2(A).

<15> Example. Suppose {Xt : 0 ≤ t ≤ 1} is an adapted stochastic process with continuous sample paths.
Suppose also that there exist adapted processes µ and σ with continuous sample paths, such that

Et (Xt+h − Xt ) = hµ(t, ω) + smaller order terms

Et (Xt+h − Xt )
2 = hσ 2(t, ω) + smaller order terms

Interpret the first approximation to mean that

Zt = Xt −
∫ t

0
µ(s, ω) ds is a martingale.

The second approximation then gives

Es
(
Zt+h − Zt

)2 = Es(Xt+h − Xt )
2 − (

µ(t, ω)h + . . .
)2 = hσ 2(t, ω) + smaller order terms,

which we can interpret to mean that

Z2
t −

∫ t

0
σ 2(s, ω) ds is a martingale.

If we write Dt for the drift
∫ t

0 µ(s, ω) ds and At for the increasing process
∫ t

0 σ 2(s, ω) ds, we can define

H • X = H • Z + H • D,

with the martingale H • Z defined as above and the bounded variation process H • D defined as in
Section 2.�

<16> Lemma. If the martingale M has property <11> and if Z = G • M (a new martingale), then the
increasing process � = (G2) • A makes Z2

t − �t a martingale.

Rough proof. Suppose G is an elementary process,

Gt =
∑n

i=0
gi (ω)I{ti < t ≤ ti+1}.

For fixed s < t , define �Z = Zt − Zs and �� = �t −�s We need to show that E
(
W ((�Z)2 − ��

) = 0
for W depending only on Fs-information. With no loss of generality, we may assume that both s and t
are grid points: s = tj and t = tk . Then

�Z =
∑k−1

i= j
gi�i M where �i M = M(ti+1) − M(ti )

�� =
∑k−1

i= j
g2

i �i A where �i A = A(ti+1) − A(ti ).

Expand the quadratic then subtract.

E
(
W ((�Z)2 − ��

) =
∑k−1

i= j
EWg2

i

(
(�i M)2 − �i A

) + 2
∑

i<	
E

(
Wgi g	�i M

) (
�	M

)
Each term in the first sum vanishes, by virtue of the martingale property <12> and the fact that Wg2

i
depends only on Fti -information. Each of the cross product terms in the double sum vanishes because
Wgi g	�i M depends only on Ft	 -information and Et	�	M = 0.

Chant appropriate incantations as elementary functions converge to the general G, wave hands
ignoring various hidden moment assumptions, then declare the same property to hold in the limit.�
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Actually, you have most of the tools necessary to make the passage from elementary G to more general
processes rigorous. Consider a sequence of elementary processes for which

[]
Gn − G

[]
A → 0. Then

what?

If the increasing process A in <12> is given as in Example <15>, then

(G2) • At =
∫ t

0
G2

s σ
2
s ds.

If we choose Gs = 1/σs then �t = t . That is, the martingale

B̃t = (1/σ) • Mt =
∫ t

0
(1/σs) d Ms

has the property that B̃2
t − t is also a martingale with continuous sample paths. The Lévy’s characterization

shows that B̃ is a Brownian motion. Moreover, another argument passing from elementary functions to the
limit would show that M = σ • B̃. That is, the martingale M can be constructed as a stochastic integral
with respect to a Brownian motion.

5. Localization

If X is a process and τ is a stopping time, the stopped process X∧τ is defined by (X∧τ )t = Xt∧τ . For
a given process X it is sometimes possible to find an increasing sequence of stopping times τk , with
τk(ω) → ∞ for each ω, such that each stopped process is better behaved than X itself. For example, if B
is a standard Brownian motion and τk is defined by

τk = inf{t : |Bt | ≥ k}
then the stopped process Bτk is bounded in absolute value by the constant k.

Typically, one can carry out stochastic calculus operations on suitably stopped processes, with
boundedness taking care of various regularity problems, then pass to a limit as k tends to infinity. This
technique is called localization. In particular, a process M for which the stopped processes M∧τk are all
martingales is called a local martingale.

It it possible to develop a satisfyingly complete stochastic calculus for integration with respect to
processes (the semimartingales) expressible as the sum of a local martingale and a process whose sample
paths are locally of bounded variation, with integrands that are locally bounded,

Stopping times can also be used in place of deterministic grids to control spatial increments of a
process. For example, if X is a process with continuous paths, then by defining τ0 = 0 and

τk+1 = h ∧ inf{t ≥ τk : |X (t) − X (τk)| > δ}
we get increments with both |τk+1 − τk | ≤ h and |X (τk+1) − X (τk)| ≤ δ. Such properties are very useful
if we wish to carry out Taylor expansions with respect to both time and spatial variables.

6. Quadratic variation

For Brownian motion on [0, 1], you know that
∑n

i=0(�i B)2 converges (in probability) to 1 as the mesh of
the underlying grid tends to zero. A similar property holds for all semimartingales. For processes X with
continuous sample paths of bounded variation, the quadratic variation

Q(X, G) =
∑n

i=0
(�i X)2

tends (in probability) to zero as mesh(G) → 0.

For a martingale M with the property that M2
t − At is also martingale, for some adapted, increasing

process A with continuous sample paths, the quadratic variation over a grid does not vanish in the limit.
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We can establish this fact by mimicking the argument from Example <10>. For simplicity, suppose
M0 = A0 = 0. Define an elementary process

Hn(t, ω) =
∑n

i=0
M(ti , ω)I{ti < t ≤ ti+1}

Then

(M2
1 − 02) − 2Hn • M1 =

∑n

i=0

(
M(ti+1)

2 − M(ti )
2
) −

∑n

i=0
2M(ti )�i M

=
∑n

i=0
(�i M)2.

As the mesh of the grid tends to zero, we force
∑n

i=0(�i M)2 to converge (in what sense?) to M2
1 −2M•M1.

More generally, the quadratic variation up to time t over the grid,
∑n

i=0

(
M(t ∧ ti+1) − M(t ∧ ti+1)

)2
,

converges to an increasing process
[M]t := M2

t − 2M • Mt

This process is called the quadratic variation of the martingale.

In fact, for martingales with continuous sample paths, [M] is the same as the increasing process A.
To see why [M]1 = A1, note that the difference ξi+1 := (�i M)2 − �i A depends only on Fti+1 -information
and Eti (ξi+1) = 0. The random variable

Dn :=
∑n

i=0
(�i M)2 − A1 =

∑n+1

i=1
ξi

has EDn = 0 and
ED2

n =
∑

i
Eξ 2

i + 2
∑

i< j
E(ξiξj ) ≤

∑
i
E(�i M)4 + 0.

If the grid is fine enough to make maxi |�i M | ≤ ε (an effect that could be achieved by using stopping
times instead of deterministic grid points ti ) the last sum is smaller than

ε2
E

∑
i
(�i M)2 = ε2

EA1.

It follows that Dn converges (in probability) to zero as mesh(G) → 0. In the limit we have [M]1 − A1 = 0.

Similar arguments—starting from elementary H then passing to a limit—gives a result that will be
most useful when we develop Ito’s lemma:∑n

i=0
H(ti )

(
M(t ∧ ti+1) − M(t ∧ ti+1)

)2 → H • At in probability

as mesh(G) → 0. In fact the convergence is uniform over all t in any bounded interval.

c©David Pollard, 2004 –8– Statistics 251/551


